Heterogeneous reaction of dimethyl sulfide with a chlorine atom
- Autores: Larin I.K.1, Pronchev G.B.1, Trofimova E.M.1
-
Afiliações:
- Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- Edição: Volume 43, Nº 6 (2024)
- Páginas: 16-24
- Seção: Kinetics and mechanism of chemical reactions, catalysis
- URL: https://rjraap.com/0207-401X/article/view/674932
- DOI: https://doi.org/10.31857/S0207401X24060021
- ID: 674932
Citar
Resumo
By the method of resonant fluorescence (RF) of chlorine atoms, the reaction rate constant of a chlorine atom with dimethyl sulfide (DMS) was measured in the temperature range 308–366 K. It is shown that the reaction rate constant decreases during experiments at a higher temperature. At a temperature of 308 K, the rate constant of this reaction was measured at different ratios of the reaction time and the diffusion time of chlorine atoms to the reactor wall. The data of these experiments showed that with an increase in the diffusion time of the active centers to the surface of the reactor, compared with the contact time of the reagents, a decrease in the measured reaction rate constant is observed. This allowed us to assert that the reaction is heterogeneous and the interaction of the chlorine atom with the DMC occurs on the surface of the reactor.
Palavras-chave
Texto integral

Sobre autores
I. Larin
Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: eltrofimova@yandex.ru
Rússia, Moscow
G. Pronchev
Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: eltrofimova@yandex.ru
Rússia, Moscow
E. Trofimova
Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: eltrofimova@yandex.ru
Rússia, Moscow
Bibliografia
- Andreae M.O. // Mar. Chem. 1990. V. 30. P. 1.
- Kettle A.J., Andreae M.O. // J. Geophys. Res. 2000. V. 105. P. 26793.
- Bates T.S., Lamb B.K., Guenther A. et al. // J. Atmos. Chem. 1992. V. 14. P. 315.
- Larin I.K. // Russ. J. Phys. Chem. 2020. V. 14. № 2. P. 336; https://doi.org/10.1134/S1990793120020086
- Larin I.K., Aloyan A.E., Ermakov A.N. // J. Phys. Chem. 2021. V. 15. № 2. P. 357; https://doi.org/10.1134/S1990793121020081
- Golyak I.S., Anfimov D.R., Vintaykin I.B. et al. // J. Phys. Chem. 2023. V. 17. № 2. P. 320; https://doi.org/10.1134/S1990793123020264
- Larin I.K. // Russ. J. Phys. Chem. B 2020. V. 14. № 2. P. 344; https://doi.org/10.1134/S1990793120020256
- Aloyan A.E., Ermakov A.N., Arutyunyan V.O. // Russ. J. Phys. Chem. B 2019. V. 13. № 1. P. 214; https://doi.org/10.1134/S1990793119010032
- Chen Q., Sherwen T., Evans M., Alexander B. // Atmos. Chem. Phys. 2018. V. 18. P. 13617; https://doi.org/10.5194/acp-18-13617-2018
- Williams M.B., Campuzano-Jost P., Bauer D., Hynes A. // J. Phys. Chem. Lett. 2001. V. 344. P. 61.
- Nakano Y., Enami S., Nakamishi S. et al. // J. Phys. Chem. 2003. V. 107. P. 6381.
- Larin I.K., Belyakova T.I., Messineva N.A., Trofimova E.M. // Kinet. Katal. 2021. V. 62. P. 187;https://doi.org/10.31857/S0453881121020064
- Arsene C., Barnes I., Becker K.H., Benter T. // Int. J. Chem. Kinet. 2005. V. 37. P. 66.
- Enami S., Nakano Y., Hashimoto S. et al. // J. Phys. Chem. 2004. V. 108. P. 7785.
- Larin I.K., Spasskii A.I., Trofimova E.M., Turkin L.E. // Kinet. Katal. 2000. V. 41. № 4. P. 437; https://doi.org/10.1007/BF02756058
- Kikoin I.K. Tablitsy fizicheskikh velichin (Tables of physical values). Moscow: Atomizdat, 1976.
- Atkinson R., Baulsh D.V., Cox R.F. et al. // J. Phys. Chem. Ref. Data. 1992. V. 21. P. 1125.
- Larin I.K., Spasskii A.I., Turkin L.E., Trofimova E.M. // Kinet. Katal. 2003. V. 44. № 2. P. 218.
- Larin I.K., Spasskii A.I., Trofimova E.M., Turkin L.E. // Kinet. Catal. 2010. V. 51. № 3. P. 369.
- Larin I.K., Spasskii A.I., Trofimova E.M. // Izv. Ross. Akad. Nauk, Energ. 2012. V. 3. P. 44.
- Larin I.K., Spasskii A.I., Trofimova E.M. // J. Phys. Chem. 2019. V. 13. № 2. P. 256; https://doi.org/10.1134/S1990793119020180
- Behnke W., Zetsch C. // J. Aerosol Sci. 1989. V. 20. № 8. P. 116.
- Buben S.N., Larin I.K., Messineva N.A., Trofimova E.M. // Chem. Phys. Rep. 1996. V. 15. № 1.
- Larin I.K., Belyakova T.I., Messineva N.A., Trofimova E.M. // J. Phys. Chem. 2023. V. 17. № 2. P. 510; https://doi.org/10.1134/S199079312302029X
- Gershenzon Yu.M., Rozenshtein V.B., Spasskii A., Kogan A.M. // Dokl. Akad. Nauk SSSR. 1972. V. 205. P. 624.
- Orkin V.L., Khamaganov V.G., Larin I.K. // Intern. J. Chem. Kinet. 1993. V. 25. P. 67.
- Hwang C.J., Jiang R.C., Su T.M. // J. Chem. Phys. 1986. V. 84. P. 5095.
- Cotter E.S.N., Booth N.J., Canosa-Mas C.E. et al. // Phys. Chem. Chem. Phys. 2001. V. 3. P. 402.
- Hwang C.J., Su T.M. // J. Chem. Phys. 1987. V. 91. P. 2351.
- Fuller E.M., Ensue K., Giddins J.Q. // J. Phys. Chem. 1969. V. 73. P. 3679.
- Stickel R.E., Nicovich J.M., Wang S., Zhao Z., Wine P.H. // J. Phys. Chem. 1992. V. 96. P. 9875.
- Díaz-de-Mera Y., Aranda A., Rodríguez D. et al. // J. Phys. Chem. A. 2002. V. 106. P. 8627.
Arquivos suplementares
