ВЛИЯНИЕ МЕТОДА СИНТЕЗА НА СОСТАВ, МОРФОЛОГИЮ И КАТАЛИТИЧЕСКИЕ СВОЙСТВА НАНОРАЗМЕРНОГО ФЕРРИТА ВИСМУТА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методами спрей-пиролиза и сжигания цитратного геля осуществлен синтез нанокристаллического феррита висмута. Образцы BiFeO3исследованы методами рентгеновской дифракции, инфракрасной спектроскопии, растровой и просвечивающей электронной микроскопии, энергодисперсионной рентгеновской спектроскопии. Проведено тестирование цитратного и спрей-пиролизного образцов феррита висмута как катализаторов фентоноподобной реакции окислительной деструкции метилового оранжевого. Установлено влияние метода синтеза на состав и морфологию частиц феррита висмута, а также на каталитическую активность. Кинетика окислительной деструкции красителя в присутствии образцов феррита висмута удовлетворительно описывается моделью псевдопервого порядка, константа скорости реакции в случае BiFeO3, синтезированного методом спрей-пиролиза, составляет 0.0072 мин-1, для цитратного BiFeO3 она несколько меньше - 0.0049 мин-1. Степень деструкции метилового оранжевого за 120 мин без катализатора составляет 7%, в присутствии спрей-пиролизного феррита висмута - 62%, в присутствии цитратного феррита висмута - 51%.

Об авторах

Е. В. Томина

Воронежский государственный лесотехнический университет им. Г.Ф. Морозова; Воронежский государственный университет

Email: tomina-e-v@yandex.ru
Воронеж, Россия; Воронеж, Россия

Н. А. Куркин

Воронежский государственный университет

Воронеж, Россия

И. С. Чередниченко

Воронежский государственный университет

Воронеж, Россия

А. Н. Лукин

Воронежский государственный университет

Воронеж, Россия

Список литературы

  1. Jayababu S., Inbasekaran M., Narayanasamy S. // Inorg. Chem. Commun. 2021. V. 123. P. 108306. https://doi.org/10.1016/j.inoche.2020.108306
  2. Kharisov B.I., Dias H.V.R., Kharissova O.V. // Arab. J. Chem. 2019. V. 12.№7. P. 1234. https://doi.org/10.1016/j.arabjc.2014.10.049
  3. Ершов Д.С., Беспрозванных Н.В., Синельщикова О.Ю. //Журн. неорган. химии. 2022. Т. 67.№1. С. 118. https://doi.org/10.31857/S0044457X22010032
  4. Kefeni K.K., Msagati A.M., Mamba B.B. // Mater. Sci. Eng., B. 2017. V. 215. P. 37. http://dx.doi.org/10.1016/j.mseb.2016.11.002
  5. Томина Е.В., Перов Н.С., Миттова И.Я. и др. // Изв. АН. Сер. Хим. 2020.№5. С. 941. https://doi.org/10.1007/s11172-020-2852-1
  6. Шабельская Н.П., Егорова М.А., Раджабов А.М. и др. // Неорган. материалы. 2023. Т. 59. № 3. С. 260. https://doi.org/10.31857/S0002337X23030119
  7. Гаврилова М.А., Гаврилова Д.А., Кондрашкова И.С. и др. // Физика и химия стекла. 2023. Т. 49. № 4. С. 459. https://doi.org/10.31857/S013266512260090X
  8. Karthikeyan K., Thirumoorthi A. // Nanosystems: Physics, Chemistry, Mathematics. 2018. V. 9. № 5. P. 631. https://doi.org/10.17586/2220-8054-2018-9-5-631640
  9. Arti, Gupta R., Singh S.P. et al. // J. Alloys Compd. 2022. V. 908. P. 164602. https://doi.org/10.1016/j.jallcom.2022.164602
  10. Проскурина О.В., Соколова А.Н., Сироткин А.А. и др. // Журн. неорган. химии. 2021. Т. 66. № 2. С. 160. https://doi.org/10.31857/S0044457X2102015X
  11. Feroze A., Idrees M., Kim D.K. et al. // J. Electron. Mater. 2017. V. 46. P. 4582. https://doi.org/10.1007/s11664-017-5463-3
  12. Егорышева А.В., Кувшинова Т.Б., Володин В.Д. и др. // Неорган. материалы. 2013. V. 49. № 3. С. 316–320. https://doi.org/10.7868/S0002337X13030032
  13. Selbach S.M., Tybell T., Einarsrud M.A. et al. // J. Solid State Chem. 2010. V. 183. №. 5. P. 1205. https://doi.org/10.1016/j.jssc.2010.03.014
  14. Морозов М.И., Ломанова Н.А., Гусаров В.В. // Журн. общ. химии. 2003. Т. 73.№11. С. 1772.
  15. Liu T., Xu Y., Zhao J. // Ceram. Soc. 2010. V. 93. №11. P. 3637. https://doi.org/10.1111/j.1551-2916.2010.03945.x
  16. Макоед И.И. Получение и физические свойства мультиферроиков. Брест: БрГУ, 2009. 181 с.
  17. Valant M., Axelsson A.K., Alford N. // Chem. Mater. 2007. V. 19. №. 22. P. 5431. https://doi.org/10.1021/cm071730+
  18. Phapale S., Mishra R., Das D. // J. Nucl. Mater. 2008. V. 373. P. 137. https://doi.org/10.1016/j.jnucmat.2007.05.036
  19. Михайлов А.В., Грибченкова Н.А., Колосов Е.Н. и др. //Журн. физ. химии. 2011. Т. 85.№1. С. 31.
  20. Rojac T., Bencan A., Malic B. et al. // J. Am. Ceram. Soc. 2014. V. 97.№7. P. 1993. https://doi.org/10.1111/jace.12982
  21. Fei Ya., Yunjing Shi, Xiaofeng Z. et al. // Chem. Eng. J. 2021. V. 417. P. 127945. https://doi.org/10.1016/j.cej.2020.127945
  22. Nair S.G., Satapathy J., Kumar N.P. // Appl. Phys. A. 2020. V. 126. P. 836. https://doi.org/10.1007/s00339-020-04027-x
  23. Chen D., Niu F., Qin L. et al. // Sol. Energy Mater. Sol. Cells. 2017. V. 171. P. 24. https://doi.org/10.1016/j.solmat.2017.06.021
  24. Li Yan, Wang X.T., Zhang X.Q. et al. // Physica E: Low-dimensional Systems and Nanostructures. 2020. V. 118. P. 113865. https://doi.org/10.1016/j.physe.2019.113865
  25. Kolivand A., Sharifnia S. // Int. J. Energy Res. 2021. V. 45. P. 2739. https://doi.org/10.1002/er.5966
  26. Dutta V., Sharma S., Raizada P. et al. // Mater. Lett. 2020. V. 270. P. 127693. https://doi.org/10.1016/j.matlet.2020.127693
  27. Yun-Hui Si, Yu Xia, Ya-Yun Li et al. // Mod. Phys. Lett. B. 2018. V. 32. P. 1850185. https://doi.org/10.1142/S0217984918501853
  28. Arya G., Yogiraj J., Negi N.S. et al. // J. Alloys Compd. 2017. V. 723. P. 983. https://doi.org/10.1016/j.jallcom.2017.06.325
  29. Yisong Guo, Yongping Pu, Yongfei Cui et al. // Mater. Lett. 2017. V. 196. P. 57. https://doi.org/10.1016/j.matlet.2017.03.023
  30. Neogi S., Ghosh R. // J. Appl. Phys. 2020. V. 128. №14. P. 144501. https://doi.org/10.1063/5.0023131
  31. Siddique M., Noor K.M., Saeed M. // Z. Phys. Chem. 2019. V. 233.№5. P. 595. https://doi.org/10.1515/zpch-2018-1225
  32. Lisnevskaya I.V., Bobrova I.A., Lupeiko T.G. // J. Magn. Magn. Mater. 2016. V. 397. P. 86. https://doi.org/10.1016/j.jmmm.2015.08.084
  33. Asefi N., Masoudpanah S.M., Hasheminiasari M. // Mater. Chem. Phys. 2019. V. 228. P. 168. https://doi.org/10.1016/j.matchemphys.2019.02.059
  34. Bhoi Y.P., Nayak A.K., Gouda S.K. et al. // Catal. Commun. 2018. V. 114. P. 114. https://doi.org/10.1016/j.catcom.2018.06.018
  35. Tomina E.V., Kurkin N.A., Korol’ A.K. et al. // J. Mater. Sci. - Mater. Electron. 2022. V. 33. P. 24594. http://dx.doi.org/10.1007/s10854-022-09170-0
  36. Дмитриев А.В., Владимирова Е.В., Кандауров М.В. и др. // ФТТ. 2017. Т. 59. № 12. С. 2338. http://dx.doi.org/10.21883/FTT.2017.12.45228.167
  37. Башкиров Л.А., Дудчик Г.П., Глинская А.А. и др. // Тр. БГТУ. Сер. Химия и технология неорганических веществ. 2016.№3. C. 93
  38. Проскурина О.В., Ноговицин И.В., Ильина Т.С. и др. // Журн. общ. химии. 2018. Т. 88. № 10. С. 1699. https://doi.org/ 10.1134/S0044460X18100189
  39. Proskurina O.V., Abiev R.S., Danilovich D.P. et al. // Chem. Eng. Process. 2019. V. 143. P. 107598. https://doi.org/10.1016/j.cep.2019.107598
  40. Тимакова Е.В., Логутенко О.А., Евсеенко В.И. и др. // Химия в интересах устойчивого развития. 2015.№4. С. 379. https://doi.org/10.15372/KhUR20150407
  41. Юхин Ю.М., Коледова Е.С., Логутенко О.А. Висмут и его соединения в медицине М.: РАН, 2022. 234 с.
  42. Чевела В.В., Безрядин С.Г., Семенов В.Э. и др. // Коорд. химия. 2003. Т. 29.№6. С. 448.
  43. Mhamad S.A., Ali A.A., Mohtar S.S. et al. // Mater. Chem. Phys. 2022. V. 282. P. 125983. https://doi.org/10.1016/j.matchemphys.2022.125983
  44. Томина Е.В., Куркин Н.А., Дорошенко А.В. // Неорган. материалы. 2022. Т. 58.№7. С. 727. https://doi.org/10.31857/S0002337X22070132
  45. Tatarchuk T., Shyichuk A., Trawczynska I. et al. // Ceram. Int. 2020. V. 46. P. 27517. http://dx.doi.org/10.1016/j.ceramint.2020.07.243
  46. Evans R.W., Rafique R., Zarea A. et al. // J. Biol. Inorg. Chem. 2008. V. 13. P. 57. https://doi.org/10.1007/s00775-007-0297-8
  47. Ермакова Н.А., Волкова Л.А. // Вестник Тюменского гос. ун-та. Cер. Экология и природопользование. 2010.№3. С. 237.
  48. Лисневская И.В., Петрова А.В. // Неорган. материалы. 2009. Т. 45.№8. С. 1001.
  49. Владимирова Е.В., Дмитриев А.В., Кандауров М.В. // Журн. неорган. химии. 2019. T. 64. №6. С. 565. https://doi.org/10.1134/S0044457X19060163
  50. Денисов В.М., Белоусова Н.В., Жереб В.П. и др. // Журн. Cибирского федерального ун-та. Сер. Химия. 2012. Т. 5.№2. С. 146.
  51. Ломанова Н.А., Томкович М.В., Соколов В.В. и др. // Журн. общ. химии. 2016. Т. 86. № 10. С. 1605.
  52. Gustau C., James F.S. // Adv. Mater. 2009. V. 21. №24. P. 2463. https://doi.org/10.1002/adma.200802849
  53. Великанова И.А., Глинская А.А., Дудчик Г.П. // Тр. БГТУ. Сер. 2. Химические технологии, биотехнология, геоэкология. 2019.№1. С. 112.
  54. Клындюк А.И., Чижова Е.А., Тугова Е.А. и др. // Изв. СПбГТИ (ТУ). 2015.№29. C. 3.
  55. Дмитриев А.В., Владимирова Е.В., Кандауров М.В. и др. //Журн. прикл. химии. 2019.Т. 92.№1. С. 95. https://doi.org/10.1134/S0044461819010134
  56. Debnath K., Pramanik A. // Tetrahedron Lett. 2015. V. 56. P. 1654. https://doi.org/10.1016/j.tetlet.2015.02.030
  57. We L., Yang G., Wang R. et al. // J. Hazard. Mater. 2009. V. 164. P. 1159. https://doi.org/10.1016/j.jhazmat.2008.09.016
  58. Maldonado A.C.M., Winkler E.L., Raineri M. et al. // J. Phys. Chem. C. 2019. V. 123.№33. P. 20617. https://doi.org/10.1021/acs.jpcc.9b05371
  59. Hu Z., Oh W., Liu Yi et al. // J. Colloid Interface Sci. 2018. V. 509. P. 502. https://doi.org/10.1016/j.jcis.2017.09.035
  60. Soltani T., Entezari M.H. // Chem. Eng. J. 2014. V. 251. P. 207. http://dx.doi.org/10.1016/j.cej.2014.04.021
  61. Jiang Yo., Xing Ch., Chen Yu. et al. // Environ. Sci. Poll. Res. 2021. P. 1. https://doi.org/10.21203/rs.3.rs-427626/v1
  62. Cai X., Li J. et al. // Int. J. Environ. Res. Public Health. 2020. V. 17. P. 6. https://doi.org/10.3390/ijerph17010006
  63. Iboukhoulef H., Rachida D., Abdeltif A. et al. // J. Photochem. Photobiol. A: Chem. 2019. V. 383. P. 112012. http://dx.doi.org/10.1016/j.jphotochem.2019.112012

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024