Synthesis and structure of stibonium complexes: {[2,6-(MeO)2C6H3]3SbCH2C(O)OEt}I3 and {[(2,6-(MeO)2C6H3)3SbEt][Hg3I7]}n

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

New stybonium complexes containing polyanions have been obtained. Alkylation of tris(2,6-dimethoxyphenyl)stibine with ethyl iodoacetic acid synthesized [Ar3SbCH2C(O)OEt]I3, Ar = 2,6-(MeO)2C6H3, which is also the product of the reaction of [Ar3SbCH2C(O)OEt]I and I2. The interaction of [Ar3SbEt]I with mercury diiodide leads to the formation of {[Ar3SbEt][Hg3I7]}n, Ar = 2,6-(MeO)2C6H3. The compounds [Ar3SbCH2C(O)OEt]I3 and {[Ar3SbEt][Hg3I7]}n were characterized by the by X-ray diffraction. Antimony and mercury atoms have a distorted tetrahedral coordination. Bond angles are in the ranges: ∠CSbC 104.2(2)–113.9(1)° and ∠CSbC 102.4(4)–116.0(5)°, ∠IHgI 97.06(2)–121.28(2)°.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Egorova

Blagoveschensk State Pedagogical University

Хат алмасуға жауапты Автор.
Email: bgpu.chim.egorova@mail.ru
Ресей, Blagoveschensk

I. Nesina

Blagoveschensk State Pedagogical University

Email: bgpu.chim.egorova@mail.ru
Ресей, Blagoveschensk

V. Zhidkov

Blagoveschensk State Pedagogical University

Email: bgpu.chim.egorova@mail.ru
Ресей, Blagoveschensk

N. Rodionova

Blagoveschensk State Pedagogical University

Email: bgpu.chim.egorova@mail.ru
Ресей, Blagoveschensk

N. Kuratieva

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: bgpu.chim.egorova@mail.ru
Ресей, Novosibirsk

N. Pervukhina

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: bgpu.chim.egorova@mail.ru
Ресей, Novosibirsk

Әдебиет тізімі

  1. Кочешков К.А., Сколдинов А.П., Землянский Н.Н. Методы элементоорганической химии. Сурьма, висмут. М.: Наука, 1976. С. 184.
  2. Моругова В.А., Гущин А.В., Скворцов Г.Г., Моисеев Д.В. // Журн. общ. химии. 2006. Т. 76. № 5. С. 784.
  3. Moiseev D.V., Morugova V.A., Gushchin A.V. et al. // J. Organomet. Chem. 2004. V. 689. P. 731. https://doi.org/10.1016/j.jorganchem.2003.11.025
  4. Qin W., Kakusawa N., Wu Y. et al. // Chem. Pharm. Bull. 2009. V. 57. № 4. P. 436. https://doi.org/10.1248/cpb.57.436
  5. Гущин А.В., Малеева А.И., Кипелкин Е.В. и др. // Журн. общ. химии. 2021. Т. 91. № 2. С. 274. https://doi.org/10.31857/S0044460X21020116
  6. Hirai M., Myahkostupov M., Castellano F.N., Gabbaï F.P. // Organometallics. 2016. V. 35. P. 1854. https://doi.org/10.1021/acs.organomet.6b00233
  7. Ke I.-S., Myahkostupov M., Castellano F.N., Gabbaï F.P. // J. Am. Chem. Soc. 2012. V. 134. № 37. P. 15309. https://doi.org/10.1021/ja308194w
  8. Fujiwara M., Imada M., Baba A., Matsuda H. // Tetrahedron Lett. 1989. V. 30. P. 739.
  9. Fujiwara M., Baba A., Matsuda H. // J. Heterocycl. Chem. 1989. V. 26. Р. 1659. https://doi.org/10.1002/jhet.5570260628
  10. Ugarte R.A., Devarajan D., Mushinski R.M. et al. // Dalton Trans. 2016. V. 45. P. 11150. https://doi.org/10.1039/C6DT02121B
  11. Artem'eva E.V., Duffin R.N., Munuganti S. et al. // J. Inorg. Biochem. 2022. V. 234. P. 111864. https://doi.org/10.1016/j.jinorgbio.2022.111864
  12. Doering W.E., Hoffmann A.K. // J. Am. Chem. Soc. 1955. V. 77. P. 521. https://doi.org/10.1021/ja01608a003
  13. Brinnand M.E., Dyke W.J.C., Jones W.H. et al. // J. Chem. Soc. 1932. Р. 1815. https://doi.org/10.1039/JR9320001815
  14. Issleib K., Hamann B. // Z. Аnorg. Аllg. Сhem. 1965. V. 339. P. 289. https://doi.org/10.1002/zaac.19653390509
  15. Issleib K., Hamann B., Schmidt L. // Z. Аnorg. Аllg. Сhem. 1965. V. 339. P. 298. https://doi.org/10.1002/zaac.19653390510.
  16. Huang Y.-Z., Liao Y. // J. Org. Chem. 1991. V. 56. P. 1381. https://doi.org/10.1021/jo00004a010
  17. Huang Y.-Z., Zhang L.-J., Chen C., Guo Z.-G. // J. Organomet. Chem. 1991. V. 412. P. 47. https://doi.org/10.1016/0022-328X(91)86040-W
  18. Henry M.C., Wittig G. // J. Am. Chem. Soc. 1960. V. 82. № 3. P. 563. https://doi.org/10.1021/ja01488a017
  19. Henning D., Kempter G., Ahrens E. et al. // Z. Chem. 1967. V. 7. № 12. P. 463. https://doi.org/10.1002/zfch.19670071213
  20. Henning D., Kempter G., Worlitzer K.-D. // Z. Chem. 1969. V. 9. № 8. P. 306. https://doi.org/10.1002/zfch.19690090813
  21. Wade C.R., Gabbaï F.P. // Organometallics. 2011. V. 30. P. 4479. https://doi.org/10.1021/om200499y
  22. Christianson A.M., Gabbaï F.P. // Chem. Commun. 2017. V. 53. P. 2471. https://doi.org/10.1039/C6CC09205E
  23. Wada M., Miyake S., Hayashi S. et al. // J. Organomet. Chem. 1996. V. 507. P. 53. https://doi.org/10.1016/0022-328X(95)05716-3
  24. Егорова И.В., Жидков В.В., Гринишак И.П. и др. // Журн. общ. химии. 2021. Т. 91. № 7. С. 1100.
  25. Егорова И.В., Несина И.Н., Жидков В.В. и др.// Журн. общ. химии. 2024. Т. 94. № 9.
  26. Cambridge Structural Database System, Version 5.43, 2021.
  27. Егорова И.В., Жидков В.В., Гринишак И.П. и др. // Журн. неорган. химии. 2019. Т. 64. № 1. С. 15.
  28. Bricklebank N., Godfrey S.M., Lane H.P. et al. // J. Chem. Soc., Dalton Trans. 1994. V. 12. P. 1759. https://doi.org/10.1039/dt9940001759
  29. Breunig H.J., Denker M., Ebert K.H. et al. // Z. Anorg. Allg. Chem. 1997. V. 623. P. 1151. https://doi.org/10.1002/zaac.19976230724
  30. Wittig G., Torsell K. // Acta Chem. Scand. 1953. V. 7. P. 1293. https://doi.org/10.3891/acta.chem.scand.07-1293
  31. Breunig H.J., Koehne T., Moldovan O. et al. // J. Organomet. Chem. 2010. V. 695. P. 1307. https://doi.org/10.1016/j.jorganchem.2010.02.016
  32. Groessl M., Fei Z., Dyson P.J., Katsyuba S.A. et al. // Inorg. Chem. 2011. V. 50 № 19. P. 9728. 10.1021/ic201642k' target='_blank'>https://doi: 10.1021/ic201642k
  33. Edis Z., Bloukh S., Abu Sara H. et al. // Pathog. 2019. V. 182. P. 48. https://doi.org/10.3390/pathogens8040182
  34. Matteo S., Bazzicalupi C., Celeste G. et al. // R. Soc. Chem. 2013. V. 47. P. 11. https://doi.org/10.1039/x0xx00000x
  35. Zhilyaeva E.I., Torunova S.A., Lyubovskaya R.N. et al. // Synth. Met. 1999. V. 107. P. 123. https://doi.org/10.1016/S0379-6779(99)00151-4
  36. Zhilyaeva E.I., Lyubovskaya R.N., Konovalikhin S.V. et al. // Synth. Met. 1998. V. 94. № 1. P. 35. https://doi.org/10.1016/S0379-6779(97)04136-2
  37. Martinez B., Livache C., Goubet N. et al. // Phys. Chem. C. 2018. V. 122. № 1. P. 859. https://doi.org/10.1021/acs.jpcc.7b09972
  38. Cryer M.E., Fiedler H., Halpert J.E. // ACS Appl. Mater. Inter. 2018. V. 10. № 22. P. 18927. https://10.1021/acsami.8b05429
  39. Middya A., Snigdhya G., Mondal P. et al. // Inorg. Chim. Acta. 2023. V. 558. P. 1217. https://doi.org/10.1016/j.ica.2023.121754
  40. Егорова И.В., Жидков В.В., Родионова Н.А. и др. // Журн. общ. химии. 2023. Т. 93. № 9. С. 1403. https://doi.org/10.1134/S1070363223090098
  41. Bruker AXS Inc., APEX2 (Version 1.08), SAINT (Version 7.03), and SADABS (Version 2.11). Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA, 2004.
  42. Sheldrick G.M. // Acta Crystallogr., Sect. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  43. Smith B.C. Infrared Spectral Interpretation: A Systematic Approach. Boca Raton: CRC Press, 1998. P. 288. https://doi.org/10.1201/9780203750841
  44. Cordero B., Gomez V., Platero-Prats A.E. et al. // J. Chem. Soc., Dalton Trans. 2008. V. 21. P. 2832. https://doi.org/10.1039/B801115J
  45. Бацанов С.С. // Неорган. материалы. 2001. Т. 37. № 9. С. 1031. https://doi.org/10.1023/A:1011625728803
  46. Marks T.J., Kalina D.W. // Extended Linear Chain Compounds. N.Y. 1982. V. 1. P. 197.
  47. Adonin S.A., Sokolov M.N., Fedin V.P. // Coord. Chem. Rev. 2018. V. 367. P. 1. https://doi.org/10.1016/j.ccr.2018.04
  48. Svensson P.H., Kloo L. // Chem. Rev. 2003. V. 103. № 5. P. 1649. https://doi.org/10.1021/cr0204101
  49. Jones P.G., Ruthe F. CCDC 926016: Experimental Crystal Structure Determination. 2013. https://doi.org/10.5517/cc102lh5
  50. Savastano M. // Dalton Trans. 2021. V. 50. № 4. P. 1142. https://doi.org/10.1039/D0DT04091F
  51. Rusnik J., Swen-Walstra S., Migchelsen T. // Acta Crystallogr. 1972. V. 28. P. 1331. https://doi.org/10.1107/s0567740872004248
  52. Войт Е.И., Панасенко А.Е., Земнухова Л.А. // Журн. структур. химии. 2009. Т. 50. № 1. С. 66.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Scheme 1. Synthesis of stibonium complexes: a – ICH2C(O)OEt, a – ICH2C(O)OEt (t), b – EtI, c – HgI2, d – I2.

Жүктеу (121KB)
3. Fig. 1. The structure of the cation of complex I with numbering of atoms and thermal vibration ellipsoids (50%), hydrogen atoms are not shown (a); projection of the structure of complex I onto the ac plane (b).

Жүктеу (392KB)
4. Fig. 2. Structure of the cation of complex II with numbering of atoms and thermal vibration ellipsoids (50%), hydrogen atoms are not shown (a); fragment of the polymeric anion [Hg3I7]n (b).

Жүктеу (233KB)
5. Fig. 3. Projection of a fragment of the structure of compound II along the c axis.

Жүктеу (145KB)

© Russian Academy of Sciences, 2025