Volatile β-diketonate complexes of Rb-Co: effect of incorporation a neutral ligand 18-crown-6 ether

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Heterometallic β-diketonate complexes MI[M(L)n] containing alkali metal cations MI are of great interest from the point of view of their use in the preparation of halide perovskites. However, such compounds are poorly studied for MI = Rb and there is no information on their crystal structure. In this work, two types of such complexes are presented: Rb[Co(hfac)3] 1 and novel [Rb(18C6)][Co(hfac)3] 2 (hfac = CF3COCHCOCF3, hexafluoroacetylacetonate ion, 18C6 = 18-crown-6 ester). The compounds were characterized by elemental analysis, IR spectroscopy, single-crystal and powder XRD, and TGA. Both complexes have a chain polymeric structure, whereas the inclusion of the neutral 18C6-ligand effectively reduces the number of contacts between the cation and the complex anion [Co(hfac)3]. Both heterometallic complexes are more thermally stable than Rb(hfac), with 1 partially transitioning into the gas phase at atmospheric pressure.

Толық мәтін

Рұқсат жабық

Авторлар туралы

D. Kochelakov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: pi-3@outlook.com
Ресей, Novosibirsk, 630090

P. Stabnikov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences

Email: pi-3@outlook.com
Ресей, Novosibirsk, 630090

E. Vikulova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences

Email: pi-3@outlook.com
Ресей, Novosibirsk, 630090

Әдебиет тізімі

  1. Steblevskaya N.I., Ziatdinov A.M., Belobeletskaya M.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 1737. https://doi.org/10.1134/S0036023623602210
  2. Lin K., Xing J., Quan L.N. et al. // Nature. 2018. V. 562. P. 245. https://doi.org/10.1038/s41586-018-0575-3
  3. Wehrenfennig C., Eperon G.E., Johnston M.B. et al. // Adv. Mater. 2014. V. 26. № 10. P. 1584. https://doi.org/10.1002/adma.201305172
  4. Zeng J., Li X., Wu Y. et al. // Adv. Funct. Mater. 2018. V. 28. P. 1804394. https://doi.org/10.1002/adfm.201804394
  5. Xu Y., Cao M., Huang S. // Nano Res. 2021. V. 14. P. 3773. https://doi.org/10.1007/s12274-021-3362-7
  6. Temerov F., Baghdadi Y., Rattner E. et al. // ACS Appl. Energy Mater. 2022. V. 5. № 12. P. 14605. https://doi.org/10.1021/acsaem.2c02680
  7. Wang H., Zhang X., Wu Q. et al. // Nat. Commun. 2019. V. 10. № 1. P. 665. https://doi.org/10.1038/s41467-019-08425-5
  8. Körbel S., Marques M.A.L., Botti S. // J. Mater. Chem. C. 2016. V. 4. № 15. P. 3157. https://doi.org/10.1039/C5TC04172D
  9. Mubarak A.A. // Mod. Phys. Lett. B. 2017. V. 31. № 6. P. 1750033. https://doi.org/10.1142/s0217984917500336
  10. Erum N., Iqbal M.A. // Acta Phys. Pol. A. 2020. V. 138. № 3. P. 509. https://doi.org/10.12693/APhysPolA.138.509
  11. Hashmi R., Zafar M., Shakil M. et al. // Chin. Phys. B. 2016. V. 25. № 11. P. 117401. https://doi.org/10.1088/1674-1056/25/11/117401
  12. Shafer M.W. // J. Appl. Phys. 1969. V. 40. № 3. P. 1601. https://doi.org/10.1063/1.1657792
  13. Dubrovin R.M., Siverin N.V., Syrnikov P.P. et al. // Phys. Rev. B. 2019. V. 100. № 2. P. 024429. https://doi.org/10.1103/physrevb.100.024429
  14. Parhi P., Kramer J., Manivannan V. // J. Mater. Sci. 2008. V. 43. № 16. P. 5540. https://doi.org/10.1007/s10853-008-2833-5
  15. Munasinghe H.N., Suescun L., Dhanapala B.D. et al. // Inorg. Chem. 2020. V. 59. № 23. P. 17268. https://doi.org/10.1021/acs.inorgchem.0c02522
  16. Dhanapala B.D., Munasinghe H.N., Suescun L. et al. // Inorg. Chem. 2017. V. 56. № 21. P. 13311. https://doi.org/10.1021/acs.inorgchem.7b02075
  17. Troyanov S.I., Gorbenko O.Y., Bosak A.A. // Polyhedron. 1999. V. 18. № 26. P. 3505. https://doi.org/10.1016/S0277-5387(99)00288-0
  18. Гуревич М.З., Сас Т.М., Мазепова Н.Е. и др. // Журн. неорган. химии. 1975. Т. 20. № 3. С. 735.
  19. Гуревич М.З., Сас Т.М., Степин Б.Д. и др. // Журн. неорган. химии. 1971. Т. 16. № 6. С. 1748.
  20. Makarenko A.M., Zaitsau D.H., Zherikova K.V. // Coatings. 2023. V. 13. № 3. P. 535. https://doi.org/10.3390/coatings13030535
  21. Kuznetsova O.V., Fursova E.Y., Letyagin G.A et al. // Russ. Chem. Bull. 2018. V. 67. № 7. P. 1202. https://doi.org/10.1007/s11172-018-2202-8
  22. Battiato S., Rossi P., Paoli P. et al. // Inorg. Chem. 2018. V. 57. № 24. P. 15035. https://doi.org/10.1021/acs.inorgchem.8b02267
  23. Peddagopu N., Sanzaro S., Rossi P. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. № 36. P. 3776. https://doi.org/10.1002/ejic.202100553
  24. Gulino A., Fiorito G., Fragalà I. // J. Mater. Chem. 2003. V. 13. № 4. P. 861. https://doi.org/10.1039/b211861k
  25. Kochelakov D.V., Vikulova E.S., Kuratieva N.V. et al. // J. Struct. Chem. 2023. V. 64. P. 82. https://doi.org/10.1134/S0022476623010055
  26. Nakamoto K. Infrared and Raman spectra of inorganic and organic compounds. USA, New York: John Wiley & Sons Inc., 1997.
  27. Mikhailovskaya T.F., Makarov A.G., Selikhova N.Y. et al. // J. Fluorine Chem. 2016. V. 183. P. 44. https://doi.org/10.1016/j.jfluchem.2016.01.009
  28. Tikhova V.D., Fadeeva V.P., Nikulicheva O.N. et al. // Chem. Sust. Develop. 2022. V. 30. P. 640. https://doi.org/10.15372/CSD2022427
  29. APEX3 (v.2019.1-0), Bruker AXS Inc., Madison, Wisconsin, USA, 2019.
  30. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. 10.1107/S2053229614024218' target='_blank'>https://doi: 10.1107/S2053229614024218
  31. Casanova D., Llunell M., Alemany P. et al. // Chem.-Eur. J. 2005. V. 11. № 5. P. 1479. https://doi.org/10.1002/chem.200400799
  32. Fursova E.Y., Kuznetsova O.V., Ovcharenko V.I. et al. // Russ. Chem. Bull. 2008. V. 57. № 6. P. 1198. https://doi.org/10.1007/s11172-008-0151-3
  33. Palii A.V., Korchagin D.V., Yureva E.A. et al. // Inorg. Chem. 2016. V. 55. № 19. P. 9493. https://doi.org/10.1021/acs.inorgchem.6b01473
  34. Klotzsche M., Barreca D., Bigiani L. et al. // Dalton Trans. 2021. V. 50. P. 10374. https://doi.org/10.1039/D1DT01650D
  35. Rietveld H.M. // J. Appl. Crystallogr. 1969. V. 2. P. 65. https://doi.org/10.1107/S0021889869006558
  36. Pedersen C.J. // J. Am. Chem. Soc. 1967. V. 89. № 26. P. 7017. https://doi.org/10.1021/ja01002a035
  37. Норов Ш.К. Комплексообразующие и мембраноактивные свойства краун-эфиров. Ташкент: Фан, 1991. 60 c. ISBN 5-648-01316-7
  38. Peddagopu N., Pellegrino A.L., Bonaccorso C. et al. // Molecules. 2022. V. 27. № 19. P. 6282. https://doi.org/10.3390/molecules27196282
  39. Girichev G.V., Giricheva N.I., Khochenkov A.E. et al. // Chem. Eur. J. 2021. V. 27. № 3. P. 1103. https://doi.org/10.1002/chem.202004010

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Diffraction patterns of synthesis products 1 and 2.

Жүктеу (206KB)
3. Fig. 2. Fragment of the Rb[Co(hfac)3] chain (a), chains in the (110) direction (b).

Жүктеу (273KB)
4. Fig. 3. Hexagonal motif of packing of Rb[Co(hfac)3] chains.

Жүктеу (231KB)
5. Fig. 4. Fragment of the [Rb(18C6)][Co(hfac)3] chain (a), chains along the a direction are shown without positional disorder for clarity (b).

Жүктеу (405KB)
6. Fig. 5. Hexagonal motif of [Rb(18C6)][Co(hfac)3] (perpendicular to the a axis).

Жүктеу (267KB)
7. Fig. 6. Thermograms of Rb(hfac), [Co(H2O)2(hfac)2], Rb[Co(hfac)3] and [Rb(18C6)][Co(hfac)3] (He atmosphere, heating rate 10 deg/min).

Жүктеу (111KB)

© Russian Academy of Sciences, 2025