Phase transformations in the KNd(SO4)2 ∙ H2O–SrSO4 ∙ 0.5H2O system when heated to a temperature of 1000°C

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

X-ray phase and thermogravimetric analysis methods established the existence of 3 crystalline hydrate modifications, having the composition KNd(SO4)2 ∙ H2O and parameters of their elementary cells are defined. Dehydration in the heating process of KNd(SO4)2 ∙ H2O at a temperature of 250°C leads to the formation of a partially dehydrated modification of the approximate composition of KNd(SO4)2 ∙ 0.2H2O. Further heating to 400°C completes the complete dehydration with formation of the anhydrous monoclinic modification KNd(SO4)2. The high-temperature triclinic modification KNd(SO4)2 exists in the temperature range 635–900°C and decomposes when heated above 900°C. The trigonal modification KNd(SO4)2 forms solid solutions with the crystalline matrix SrSO4 ∙ 0.5H2O. The anhydrous modification KNd(SO4)2 does not form solid solutions with the anhydrous rhombus modification SrSO4

Full Text

Restricted Access

About the authors

N. N. Bushuev

Mendeleev Russian University of Chemical Technology

Author for correspondence.
Email: nbushuev@muctr.ru
Russian Federation, Moscow, 125047

G. K. Tatosyan

Mendeleev Russian University of Chemical Technology

Email: nbushuev@muctr.ru
Russian Federation, Moscow, 125047

References

  1. Jiustel T., Nikol Y., Ronda C. // Angew. Chem. Int. Ed. 1998. V. 37. P. 3084.
  2. Kuzmina N.P., Eliseeva S.V. // Russ. J. Inorg. Chem. 2006. V. 51. P. 73. https://doi.org./10.11.34/S0036023606010141
  3. Новикова Г.Я., Моргалюк В.П., Янович Е.А. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1054. https://doi.org/1031857/S0044457X21080183
  4. Buyer C., Enseling D., Shlind J. // Crystals. 2021. V. 11. № 6. P. 513. https://doi.org./10.3390/cryst 11060575
  5. Feldmann C., Justel T., Ronda C. // Adv. Funct. Matter. 2003. V. 13. P. 511.
  6. Kazmierczak C., Hening A. // J. Solid State Chem. 2010. V. 183. № 9. P. 2087. https://doi.org/10.1016/j.jssc 2010.07.024
  7. Исхакова Л.Д., Плющев В.Е. // Журн. неорган. химии. 1970. Т. 15. № 9. С. 2526.
  8. Ishakova L.D., Gasanov Y.M., Trunov V.R. // J. Struct. Chem. 1988. V. 29. P. 242. https://doi org/1007/BF00747987
  9. Бушуев Н.Н., Татосян Г.К. // Журн. неорган. химии. 2023. Т. 68. № 10. С. 1478. https://doi.org/10.31857/S0044457X2360038X
  10. Takahashi Satoshi, Seki Masanobu, Setoyama Katsumi // Bull. Chem. Soc. Jpn. 1993. V. 66. P. 2219. https://doi.org/10/1246/bcsj.66.2219
  11. Takahashi S. Kougakin Universit. Japan. Private сommunication 1993 (ICDD 44-0375).
  12. Бушуев Н.Н., Сысоев А.А., Великодный Ю.А. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 463. http://doi.org/10.31857/S0044457X22601675
  13. Bushuev N.N., Zinin D.S., Tatosyan G.K., Sviridenkova N.V. // J. Anal. Chem. 2024. V. 79. № 11. P. 1561. https://doi org/10.1134/S1061934824700977
  14. Degtiarev P.A., Pokrovskii A.N., Kovba L.M., Kortnaia F.M. // J. Solid State Chem. 1977. V. 22. № 4. P. 419. https://doi.org/10.1016/0022-4596(77)90019-6
  15. Iskhakova L.D., Sarukhanyan N.L., Shchegoleva T.M. et al. // Kristallografiya. 1985. V. 30. P. 474.
  16. Shannon R.D., Prewitt C.T. // Acta Crystallogr. Sect. B. 1969. V. 25. P. 925. https://doi.org/10.1107/S0567740869003220
  17. Garske D., Peacor D. // Z. Kristallchem. 1965. V. 121. P. 204.
  18. Бушуев Н.Н., Тюльбенджян Г.С., Егорова А.Н. и др. // Журн. неорган. химии. 2021. Т. 66. № 3. С. 382. https://doi.org/10.31857/S00444457X21030041
  19. Бушуев Н.Н., Егорова А.Н., Плотко И.И. // Неорган. материалы. 2022. Т. 58. № 11. С. 1202. https://doi/10.31857/S0002337X22100050
  20. Цизин Г.И., Малофеева Г.И., Тобелко К.И. и др. // Журн. аналит. химии. 1983. Т. 38. № 6. С. 1027.
  21. Тобелко К.И., Цизин Г.И., Малофеева Г.И. и др. // Журн. неорган. химии. 1983. Т. 28. № 4. С. 889.
  22. Цизин Г.И., Тобелко К.И., Малофеева Г.И. и др. // Журн. неорган. химии. 1983. Т. 28. № 9. С. 2256.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Thermogram of pure (100%) KNd(SO4)2 ∙ H2O.

Download (190KB)
3. Fig. 2. Thermogram of 30% KNd(SO4)2 · H2O + 70% SrSO4 · 0.5H2O.

Download (179KB)
4. Fig. 3. Thermogram of 70% KNd(SO4)2 · H2O + 30% SrSO4 · 0.5H2O.

Download (175KB)
5. Fig. 4. Thermogram of the anhydrous monoclinic modification of KNd(SO4)2.

Download (113KB)

Copyright (c) 2025 Russian Academy of Sciences