Termochemistry and fluorinating ability of cerium tetrafluoride

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Experimental data on the thermal stability and fluorinating ability of cerium(IV) fluoride are critically reviewed. From experiments on the joint fluorination of CeF3k and platinum, the value ΔfH°(CeF4, k, 298 K) = –1939.9±7.6 kJ/mol was determined. The most reliable value of the enthalpy of sublimation of cerium tetrafluoride ΔsH°(CeF4, 298 K) = 270.2±1.7 was selected and ΔfH°(CeF4, g, 298 K) = –1669.6±7.8 kJ/mol was calculated. A comparison of CeF4(k) with other solid-phase fluorinating agents was carried out.

Full Text

Restricted Access

About the authors

M. I. Nikitin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: alikhan@igic.ras.ru
Russian Federation, Moscow, 119991

D. B. Kayumova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: alikhan@igic.ras.ru
Russian Federation, Moscow, 119991

A. S. Alikhanyan

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: alikhan@igic.ras.ru
Russian Federation, Moscow, 119991

References

  1. Tang R.-L., Xu W., Lian X. et al. // Small. 2024. V. 20. P. 2308348. https://doi.org/10.1002/smll.202308348
  2. Chen T., Wu H., Zhou D. et al. // J. Mater. Sci. Mater. Electron. 2022. V. 33. P. 11712. https://doi.org/10.1007/s10854-022-08137-5
  3. Lin H.-J., Li H.-W., Murakami H. et al. // J. Alloys Compd. 2018. V. 735. P. 1017. https://doi.org/10.1016/j.jallcom.2017.10.239
  4. Ayer G.B., Klepov V.V., Pace K.A. et al. // Dalton Trans. 2020. V. 49. P. 5898. https://doi.org/10.1039/D0DT00616E
  5. Добротин Р.Б., Кондратьев Ю.В., Суворов А.В. // Общая и прикладная химия: республиканский межведомственный сборник. Вып. 1. Минск: Вышэйшая школа, 1969. 257 с.
  6. Холохонова Л.И., Резухина Т.Н. // Журн. физ. химии. 1976. Т. 50. С. 767.
  7. Kovacs A., Konings R.J.M. // Handbook on Physics and Chemistry of Rare Earths. V. 33. Ch. 213. N.Y.: Elsevier, 2003. P. 147.
  8. Червонный А.Д., Червонная Н.А. // Журн. физ. химии. 2007. Т. 81. № 10. С. 1735.
  9. Zmbov K.F., Margrave J.L. // Mass Spectrom. Inorg. Chem., Adv. Chem. 1968. V. 72. P. 267.
  10. Myers C.E., Graves D.T. // J. Chem. Eng. Data. 1977. V. 22. № 4. P. 440.
  11. Westrum E.F. Jr., Beale A.F. Jr. // J. Phys. Chem. 1961. V. 65. P. 353.
  12. Khanaev E.I., Storozhenko T.P., Afanas’ev Yu.A. Termokhimii Tetraftorida Ceriya. Deposited Doc. 1981, SPSTL 614 Khp-D81. Available in SPSTL. Russia.
  13. Badtiev E.B., Chilingarov N.S., Korobov M.V. et al. // High Temp. Sci. 1982. V. 15. P. 93.
  14. Gibson J.K., Haire R.G. // J. Less-Common Met. 1988. V. 144. Р. 123.
  15. Chilingarov N.S., Shlyapnikov I.M., Mazej et al. // ECS Transactions. 2013. V. 46. № 1. P. 191. https://doi.org/10.1149/04601.0191ecst
  16. Chilingarov N.S., Knot’ko A.V., Shlyapnikov I.M. // J. Phys. Chem. 2015. V. 119. № 31. P. 8452. https://doi.org/10.1021/acs.jpca.5b04105
  17. Термические константы веществ. Справочник в 10 вып. / Под ред. Глушко В.П. М.: ВИНИТИ, 1974. Вып. VIII. Ч. 1. http://www.chem.msu.ru/cgi-bin/tkv.pl
  18. Barin I., Knacke O., Kubaschewski O. Thermochemical properties of inorganic substances. Supplement. B. etc.: Springer-Verlag, 1977. P. 861.
  19. Binneweis M., Milke E. Thermochemical Data of Elements and Compounds. 2002. P. 523. https://doi.org/10.1002/9783527618347
  20. Соломоник В.Г., Ячменев А.Ю., Смирнов А.Н. // Журн. структур. химии. 2008. Т. 49. № 4. С. 640.
  21. Киселев Ю.М., Севастьянов В.Г., Спицын В.И. // Изв. АН СССР. Сер. Хим. 1976. № 5. С. 959.
  22. Asker W.J., Wylie A.W. // Aust. J. Chem. 1965. V. 18. P. 969. https://doi.org/10.1071/CH9650969
  23. Klemm P. // Z. Anorg. Allg. Chem. 1934. V. 220. P. 180.
  24. Asker W.J., Wylie A.W. // Aust. J. Chem. 1965. V. 18. P. 959. https://doi.org/10.1071/CH9650959
  25. Korobov M.V., Badtiev E.B., Sidorov L.N. // Dep. VINITI, 1979. № 613-79.
  26. Sidorov L.N., Nikitin M.I., Korobov M.V. // Dokl. Akad. Nauk SSSR. 1979. V. 248. № 6. P. 1387.
  27. Коробов М.В. Масс-спектральные термодинамические исследования простых и комплексных фторидов платины. Дис. … д-ра хим. наук. М., 1979. 317 с.
  28. Никитин М.И., Карпухина Е.В. // Журн. неорган. химии. 2007. Т. 52. № 3. С. 384.
  29. Никитин М.И., Карпухина Е.В. // Журн. неорган. химии. 2007. Т. 52. № 4. С. 531.
  30. Никитин М.И. // Журн. неорган. химии. 2008. Т. 53. № 8. С. 1386.
  31. Никитин М.И., Чилингаров Н.С., Алиханян А.С. // Журн. неорган. химии. 2019. T. 64. № 3. C. 302.
  32. Rau J.V., Cesaro S.N., Chilingarov N.S. et al. // Inorg. Chem. Commun. 2003. V. 6. № 6. P. 643. https://doi.org/10.1016/S1387-7003(03)00070-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Adapted approximate phase diagram of CeF4–CeF3 [22], where  are the points obtained as a result of thermal analysis;  are the points obtained by differential thermal analysis; x are the quenched compositions; //// is the region in which it is impossible to describe the behavior of the system depending on temperature.

Download (161KB)
3. Fig. 2. Dependence of the equilibrium constant of reaction (6) on the reciprocal temperature. The points marked with X were not used in the calculations.

Download (115KB)

Copyright (c) 2025 Russian Academy of Sciences