Electrochromic Properties and Preparation of Thin V2O5 Films Using Heteroligand Complexes of Vanadyl

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Microstructural features, phase composition, and eletrochromic properties of V2O5 film formed by spin-coating using vanadyl alkoxoacetylacetonate as a precursor have been studied. The obtained material possesses a significant amount of V4+ ions, which is indicated both by the presence of the corresponding modes on the Raman spectra and the presence of the V7O16 phase. As a result, the material exhibits anodic electrochromism – it colors upon oxidation, changing color from pale blue to a much less transparent orange-yellow. The optical contrast can reach 30% at a wavelength of 400 nm, and the coloration efficiency is 65.26 cm2/C. The results of the study clearly demonstrate the promising application of materials based on V2O5, obtained using heteroligand hydrolytically active vanadyl complexes, as functional components of devices that provide a change in optical properties when an electrical voltage is applied.

全文:

受限制的访问

作者简介

F. Gorobtsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: phigoros@gmail.com
俄罗斯联邦, Moscow, 119991

N. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: phigoros@gmail.com
俄罗斯联邦, Moscow, 119991

Т. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: phigoros@gmail.com
俄罗斯联邦, Moscow, 119991

E. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: phigoros@gmail.com
俄罗斯联邦, Moscow, 119991

参考

  1. Granqvist C.G. // Thin Solid Films. 2014. V. 564. P. 1. https://doi.org/10.1016/j.tsf.2014.02.002
  2. Mortimer R.J. // Annu. Rev. Mater. Res. 2011. V. 41. № 1. P. 241. https://doi.org/10.1146/annurev-matsci-062910-100344
  3. Mortimer R.J., Dyer A.L., Reynolds J.R. // Displays. 2006. V. 27. № 1. P. 2. https://doi.org/10.1016/j.displa.2005.03.003
  4. Gu C., Jia A.B., Zhang Y.M. et al. // Chem. Rev. 2022. V. 122. № 18. P. 14679. https://doi.org/10.1021/acs.chemrev.1c01055
  5. Kobayashi T., Yoneyama H., Tamura H. // J. Electroanal. Chem. 1984. V. 161. P. 419.
  6. Tong Z.Q., Lv H.M., Zhao J.P. et al. // Chin. J. Polymer Sci. (Engl. Ed.). 2014. V. 32. № 8. P. 1040. https://doi.org/10.1007/s10118-014-1483-0
  7. Zhang Q., Xin B., Linc L. // Adv. Mater. Res. 2013. V. 651. P. 77. https://doi.org/10.4028/www.scientific.net/AMR.651.77
  8. Striepe L., Baumgartner T. // Chem. A Eur. J. 2017. V. 23. № 67. P. 16924. https://doi.org/10.1002/chem.201703348
  9. Shah K.W., Wang S.X., Soo D.X.Y. et al. // Polymers (Basel). 2019. V. 11. № 11. P. 1839. https://doi.org/10.3390/polym11111839
  10. Lu H.C., Kao S.Y., Chang T.H. et al. // Sol. Energy Mater. Sol. Cells. 2016. V. 147. P. 75. https://doi.org/10.1016/j.solmat.2015.11.044
  11. Assis L.M.N., Leones R., Kanicki J. et al. // J. Electroanal. Chem. 2016. V. 777. P. 33. https://doi.org/10.1016/j.jelechem.2016.05.007
  12. Costa C., Pinheiro C., Henriques I. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 3. P. 1330. https://doi.org/10.1021/am201606m
  13. Costa C., Pinheiro C., Henriques I. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 10. P. 5266. https://doi.org/10.1021/am301213b
  14. Zanarini S., Di Lupo F., Bedini A. et al. // J. Mater. Chem. C Mater. 2014. V. 2. № 42. P. 8854. https://doi.org/10.1039/c4tc01123f
  15. Jin A., Chen W., Zhu Q. et al. // Electrochim. Acta. 2010. V. 55. № 22. P. 6408. https://doi.org/10.1016/j.electacta.2010.06.047
  16. Zilberberg K., Trost S., Meyer J. et al. // Adv. Funct. Mater. 2011. V. 21. № 24. P. 4776. https://doi.org/10.1002/adfm.201101402
  17. Chen C.P., Chen Y.D., Chuang S.C. // Adv. Mater. 2011. V. 23. № 33. P. 3859. https://doi.org/10.1002/adma.201102142
  18. Gorobtsov F.Yu., Simonenko Т.L., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 1094. https://doi.org/10.1134/S0036023622070105
  19. Liu Q., Li Z.F., Liu Y. et al. // Nat. Commun. 2015. V. 6. P. 1. https://doi.org/10.1038/ncomms7127
  20. Matamura Y., Ikenoue T., Miyake M. et al. // Sol. Energy Mater. Sol. Cells. 2021. V. 230. P. 111287. https://doi.org/10.1016/j.solmat.2021.111287
  21. Gorobtsov P.Yu., Mokrushin A.S., Simonenko Т. L. et al. // Materials. 2022. V. 15. № 21. P. 7837. https://doi.org/10.3390/ma15217837
  22. Gorobtsov P.Yu., Simonenko Т.L., Simonenko N.P. et al. // Colloids Interfaces. 2023. V. 7. № 1. https://doi.org/10.3390/colloids7010020
  23. Clauws P., Broeckx J., Vennik J. // Phys. Status Solidi (B). 1985. V. 131. № 2. P. 459. https://doi.org/10.1002/pssb.2221310207
  24. Botto I.L., Vassallo M.B., Baran E.J. et al. // Mater. Chem. Phys. 1997. V. 50. P. 267.
  25. Bodurov G., Ivanova T., Abrashev M. et al. // Phys. Procedia. Elsevier. 2013. P. 127. https://doi.org/10.1016/j.phpro.2013.07.054
  26. Vedeanu N., Cozar O., Stanescu R. et al. // J. Mol. Struct. 2013. P. 323. https://doi.org/10.1016/j.molstruc.2013.01.078
  27. Abello L., Husson E., Repelin Y. et al. // Vibrational spectra and valence force field of crystalline. 1983. V. 5.
  28. Zhou B., He D. // J. Raman Spectroscopy. 2008. V. 39. № 10. P. 1475. https://doi.org/10.1002/jrs.2025
  29. Baddour-Hadjean R., Marzouk A., Pereira-Ramos J.P. // J. Raman Spectroscopy. 2012. V. 43. № 1. P. 153. https://doi.org/10.1002/jrs.2984
  30. Ureña-Begara F., Crunteanu A., Raskin J.P. // Appl. Surf. Sci. 2017. V. 403. P. 717. https://doi.org/10.1016/j.apsusc.2017.01.160
  31. Schilbe P. // Physica B. 2002. V. 316–317. P. 600.
  32. Ji Y., Zhang Y., Gao M. et al. // Sci. Rep. 2014. V. 4. https://doi.org/10.1038/srep04854
  33. Huotari J., Lappalainen J., Eriksson J. et al. // J. Alloys Compd. 2016. V. 675. P. 433. https://doi.org/10.1016/j.jallcom.2016.03.116
  34. Shvets P., Dikaya O., Maksimova K. et al. // J. Raman Spectroscopy. 2019. V. 50. № 8. P. 1226. https://doi.org/10.1002/jrs.5616
  35. Vernardou D. // Coatings. 2017. V. 7. № 2. P. 1. https://doi.org/10.3390/coatings7020024
  36. Iida Y., Kaneko Y., Kanno Y. // J. Mater. Process Technol. 2008. V. 197. № 1–3. P. 261. https://doi.org/10.1016/j.jmatprotec.2007.06.032
  37. Tong Z., Hao J., Zhang K. et al. // J. Mater. Chem. C Mater. 2014. V. 2. № 18. P. 3651. https://doi.org/10.1039/c3tc32417f
  38. Cholant C.M., Westphal T.M., Balboni R.D.C. et al. // J. Solid State Electrochem. 2017. V. 21. № 5. P. 1509. https://doi.org/10.1007/s10008-016-3491-1
  39. Patil C.E., Tarwal N.L., Jadhav P.R. et al. // Curr. Appl. Phys. 2014. V. 14. № 3. P. 389. https://doi.org/10.1016/j.cap.2013.12.014
  40. Panagopoulou M., Vernardou D., Koudoumas E. et al. // Electrochim. Acta. 2019. V. 321. P. 134743. https://doi.org/10.1016/j.electacta.2019.134743
  41. Panagopoulou M., Vernardou D., Koudoumas E. et al. // J. Phys. Chem. С. 2017. V. 121. № 1. P. 70. https://doi.org/10.1021/acs.jpcc.6b09018
  42. Mjejri I., Gaudon M., Rougier A. // Sol. Energy Mater. Sol. Cells. 2019. 2018. V. 198. P. 19. https://doi.org/10.1016/j.solmat.2019.04.010
  43. Jin A., Chen W., Zhu Q. et al. // Thin Solid Films. 2009. V. 517. № 6. P. 2023. https://doi.org/10.1016/j.tsf.2008.10.001
  44. Sajitha S., Aparna U., Deb B. // Adv. Mater. Int. 2019. V. 6. № 21. P. 1. https://doi.org/10.1002/admi.201901038
  45. Surca A.K., Dražić G., Mihelčič M. // Sol. Energy Mater. Sol. Cells. 2019. V. 96. P. 185. https://doi.org/10.1016/j.solmat.2019.03.017

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. IR reflectance spectroscopy results for the glass substrate (1) and the V2O5 film formed on it (2).

下载 (77KB)
3. Fig. 2. Results of CR spectroscopy of the formed V2O5 film on a glass substrate. Marker * denotes modes characteristic of VO2, marker + - modes characteristic of V7O16.

下载 (93KB)
4. Fig. 3. Microstructure (SEM) of the formed V2O5 film on glass substrate.

下载 (398KB)
5. Fig. 4. Microstructure (AFM) of the formed V2O5 film on glass substrate.

下载 (282KB)
6. Fig. 5. Results of measuring electrochromic properties of V2O5 film: a - transmittance spectra of the cell in the visible and near-infrared ranges before the measurements and after 15 s of exposure at different values of potential; b - CVA recorded at a rate of potential change of 50 mV/s; c - change in the transmittance of the electrochromic cell based on V2O5 film at a wavelength of 400 nm and potential sweep during CVA recording; d - change in the transmittance of the cell at a wavelength of 400 nm and exposure for 15 s at 2. 5 V and 10 s at -3.2 V.

下载 (327KB)

版权所有 © Russian Academy of Sciences, 2024