Electrochromic Properties and Preparation of Thin V2O5 Films Using Heteroligand Complexes of Vanadyl
- 作者: Gorobtsov F.Y.1, Simonenko N.P.1, Simonenko Т.L.1, Simonenko E.P.1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- 期: 卷 69, 编号 10 (2024)
- 页面: 1488-1496
- 栏目: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://rjraap.com/0044-457X/article/view/676644
- DOI: https://doi.org/10.31857/S0044457X24100152
- EDN: https://elibrary.ru/JHQAEC
- ID: 676644
如何引用文章
详细
Microstructural features, phase composition, and eletrochromic properties of V2O5 film formed by spin-coating using vanadyl alkoxoacetylacetonate as a precursor have been studied. The obtained material possesses a significant amount of V4+ ions, which is indicated both by the presence of the corresponding modes on the Raman spectra and the presence of the V7O16 phase. As a result, the material exhibits anodic electrochromism – it colors upon oxidation, changing color from pale blue to a much less transparent orange-yellow. The optical contrast can reach 30% at a wavelength of 400 nm, and the coloration efficiency is 65.26 cm2/C. The results of the study clearly demonstrate the promising application of materials based on V2O5, obtained using heteroligand hydrolytically active vanadyl complexes, as functional components of devices that provide a change in optical properties when an electrical voltage is applied.
全文:

作者简介
F. Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: phigoros@gmail.com
俄罗斯联邦, Moscow, 119991
N. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: phigoros@gmail.com
俄罗斯联邦, Moscow, 119991
Т. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: phigoros@gmail.com
俄罗斯联邦, Moscow, 119991
E. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: phigoros@gmail.com
俄罗斯联邦, Moscow, 119991
参考
- Granqvist C.G. // Thin Solid Films. 2014. V. 564. P. 1. https://doi.org/10.1016/j.tsf.2014.02.002
- Mortimer R.J. // Annu. Rev. Mater. Res. 2011. V. 41. № 1. P. 241. https://doi.org/10.1146/annurev-matsci-062910-100344
- Mortimer R.J., Dyer A.L., Reynolds J.R. // Displays. 2006. V. 27. № 1. P. 2. https://doi.org/10.1016/j.displa.2005.03.003
- Gu C., Jia A.B., Zhang Y.M. et al. // Chem. Rev. 2022. V. 122. № 18. P. 14679. https://doi.org/10.1021/acs.chemrev.1c01055
- Kobayashi T., Yoneyama H., Tamura H. // J. Electroanal. Chem. 1984. V. 161. P. 419.
- Tong Z.Q., Lv H.M., Zhao J.P. et al. // Chin. J. Polymer Sci. (Engl. Ed.). 2014. V. 32. № 8. P. 1040. https://doi.org/10.1007/s10118-014-1483-0
- Zhang Q., Xin B., Linc L. // Adv. Mater. Res. 2013. V. 651. P. 77. https://doi.org/10.4028/www.scientific.net/AMR.651.77
- Striepe L., Baumgartner T. // Chem. A Eur. J. 2017. V. 23. № 67. P. 16924. https://doi.org/10.1002/chem.201703348
- Shah K.W., Wang S.X., Soo D.X.Y. et al. // Polymers (Basel). 2019. V. 11. № 11. P. 1839. https://doi.org/10.3390/polym11111839
- Lu H.C., Kao S.Y., Chang T.H. et al. // Sol. Energy Mater. Sol. Cells. 2016. V. 147. P. 75. https://doi.org/10.1016/j.solmat.2015.11.044
- Assis L.M.N., Leones R., Kanicki J. et al. // J. Electroanal. Chem. 2016. V. 777. P. 33. https://doi.org/10.1016/j.jelechem.2016.05.007
- Costa C., Pinheiro C., Henriques I. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 3. P. 1330. https://doi.org/10.1021/am201606m
- Costa C., Pinheiro C., Henriques I. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 10. P. 5266. https://doi.org/10.1021/am301213b
- Zanarini S., Di Lupo F., Bedini A. et al. // J. Mater. Chem. C Mater. 2014. V. 2. № 42. P. 8854. https://doi.org/10.1039/c4tc01123f
- Jin A., Chen W., Zhu Q. et al. // Electrochim. Acta. 2010. V. 55. № 22. P. 6408. https://doi.org/10.1016/j.electacta.2010.06.047
- Zilberberg K., Trost S., Meyer J. et al. // Adv. Funct. Mater. 2011. V. 21. № 24. P. 4776. https://doi.org/10.1002/adfm.201101402
- Chen C.P., Chen Y.D., Chuang S.C. // Adv. Mater. 2011. V. 23. № 33. P. 3859. https://doi.org/10.1002/adma.201102142
- Gorobtsov F.Yu., Simonenko Т.L., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 1094. https://doi.org/10.1134/S0036023622070105
- Liu Q., Li Z.F., Liu Y. et al. // Nat. Commun. 2015. V. 6. P. 1. https://doi.org/10.1038/ncomms7127
- Matamura Y., Ikenoue T., Miyake M. et al. // Sol. Energy Mater. Sol. Cells. 2021. V. 230. P. 111287. https://doi.org/10.1016/j.solmat.2021.111287
- Gorobtsov P.Yu., Mokrushin A.S., Simonenko Т. L. et al. // Materials. 2022. V. 15. № 21. P. 7837. https://doi.org/10.3390/ma15217837
- Gorobtsov P.Yu., Simonenko Т.L., Simonenko N.P. et al. // Colloids Interfaces. 2023. V. 7. № 1. https://doi.org/10.3390/colloids7010020
- Clauws P., Broeckx J., Vennik J. // Phys. Status Solidi (B). 1985. V. 131. № 2. P. 459. https://doi.org/10.1002/pssb.2221310207
- Botto I.L., Vassallo M.B., Baran E.J. et al. // Mater. Chem. Phys. 1997. V. 50. P. 267.
- Bodurov G., Ivanova T., Abrashev M. et al. // Phys. Procedia. Elsevier. 2013. P. 127. https://doi.org/10.1016/j.phpro.2013.07.054
- Vedeanu N., Cozar O., Stanescu R. et al. // J. Mol. Struct. 2013. P. 323. https://doi.org/10.1016/j.molstruc.2013.01.078
- Abello L., Husson E., Repelin Y. et al. // Vibrational spectra and valence force field of crystalline. 1983. V. 5.
- Zhou B., He D. // J. Raman Spectroscopy. 2008. V. 39. № 10. P. 1475. https://doi.org/10.1002/jrs.2025
- Baddour-Hadjean R., Marzouk A., Pereira-Ramos J.P. // J. Raman Spectroscopy. 2012. V. 43. № 1. P. 153. https://doi.org/10.1002/jrs.2984
- Ureña-Begara F., Crunteanu A., Raskin J.P. // Appl. Surf. Sci. 2017. V. 403. P. 717. https://doi.org/10.1016/j.apsusc.2017.01.160
- Schilbe P. // Physica B. 2002. V. 316–317. P. 600.
- Ji Y., Zhang Y., Gao M. et al. // Sci. Rep. 2014. V. 4. https://doi.org/10.1038/srep04854
- Huotari J., Lappalainen J., Eriksson J. et al. // J. Alloys Compd. 2016. V. 675. P. 433. https://doi.org/10.1016/j.jallcom.2016.03.116
- Shvets P., Dikaya O., Maksimova K. et al. // J. Raman Spectroscopy. 2019. V. 50. № 8. P. 1226. https://doi.org/10.1002/jrs.5616
- Vernardou D. // Coatings. 2017. V. 7. № 2. P. 1. https://doi.org/10.3390/coatings7020024
- Iida Y., Kaneko Y., Kanno Y. // J. Mater. Process Technol. 2008. V. 197. № 1–3. P. 261. https://doi.org/10.1016/j.jmatprotec.2007.06.032
- Tong Z., Hao J., Zhang K. et al. // J. Mater. Chem. C Mater. 2014. V. 2. № 18. P. 3651. https://doi.org/10.1039/c3tc32417f
- Cholant C.M., Westphal T.M., Balboni R.D.C. et al. // J. Solid State Electrochem. 2017. V. 21. № 5. P. 1509. https://doi.org/10.1007/s10008-016-3491-1
- Patil C.E., Tarwal N.L., Jadhav P.R. et al. // Curr. Appl. Phys. 2014. V. 14. № 3. P. 389. https://doi.org/10.1016/j.cap.2013.12.014
- Panagopoulou M., Vernardou D., Koudoumas E. et al. // Electrochim. Acta. 2019. V. 321. P. 134743. https://doi.org/10.1016/j.electacta.2019.134743
- Panagopoulou M., Vernardou D., Koudoumas E. et al. // J. Phys. Chem. С. 2017. V. 121. № 1. P. 70. https://doi.org/10.1021/acs.jpcc.6b09018
- Mjejri I., Gaudon M., Rougier A. // Sol. Energy Mater. Sol. Cells. 2019. 2018. V. 198. P. 19. https://doi.org/10.1016/j.solmat.2019.04.010
- Jin A., Chen W., Zhu Q. et al. // Thin Solid Films. 2009. V. 517. № 6. P. 2023. https://doi.org/10.1016/j.tsf.2008.10.001
- Sajitha S., Aparna U., Deb B. // Adv. Mater. Int. 2019. V. 6. № 21. P. 1. https://doi.org/10.1002/admi.201901038
- Surca A.K., Dražić G., Mihelčič M. // Sol. Energy Mater. Sol. Cells. 2019. V. 96. P. 185. https://doi.org/10.1016/j.solmat.2019.03.017
补充文件
