Spin properties of chiral SiC nanotubes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the relativistic linearized augmented cylindrical waves technique, the dependences of the band structure of single-walled SiC nanotubes on spin and chirality were calculated. It has been established that nanotubes are the wide-gap semiconductors with Eg equal to 2.26–3.15 eV, and the spin-orbit splittings of the valence and conduction band edges lie in the range of 0.05–3.5 meV. The energies of the spin-orbit gaps in righthanded and lefthanded enantiomers coincide, but their spin directions are opposite. Chiral nanotubes are determined that are most suitable for selective spin transport with potentially high fluxes of α- and β-electrons in opposite directions.

Full Text

Restricted Access

About the authors

P. N. Dyachkov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: p_dyachkov@rambler.ru
Russian Federation, Moscow, 119991

P. A. Kulyamin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: p_dyachkov@rambler.ru
Russian Federation, Moscow, 119991

References

  1. Casady J.B., Johnson R.W. // Solid-State Electron. 1996. V. 39. P. 409. https://doi.org/10.1016/0038-1101(96)00045-7
  2. Katoh Y., Snead L.L., Henager C.H. Jr et al. // J. Nucl. Mater. 2014. V. 455. P. 387. https://doi.org/10.1016/j.nucmat.2014.06.003
  3. Properties of Silicon Carbide. INSPEC Institution of Electrical Engineers / Ed. Harris G.L. London, 1995.
  4. Xi G., Peng Y., Wang S. et al. // J. Phys. Chem. B. 2004. V. 108. P. 20102. https://doi.org/10.1021/jp0462153
  5. Wu R., Wu L., Yang G. et al. // J. Phys. D: Appl. Phys. 2007. V. 40. P. 3697. https://doi.org/10.1088/0022-3727/40/12/023
  6. Wang C., Huang N., Zhuang H. et al. // Surf. Coat. Technol. 2016. V. 299. P. 96. https://doi.org/10.1016/j.surfcoat.2016.04.070
  7. Sun L., Han C., Wu N. et al. // RSC Adv. 2018. V. 8. P. 13697. https://doi.org/10.1039/c8ra02164c
  8. Hollabaugh C.M., Hull D.E., Newkirk L.R. et al. // J. Mater. Sci. 1983. V. 18. P. 3190. https://doi.org/10.1007/BF00544142
  9. Zhu W.Z., Yan M. // Scripta Mater. 1998. V. 39. P. 1675. https://doi.org/10.1016/S1359-6462(98)00372-8
  10. Fan J., Li H., Wang J. et al. // Appl. Phys. Lett. 2012. V. 101. P. 131906. https://doi.org/10.1063/1.4755778
  11. Beke D., Szekrenyes Z., Czigany Z. et al. // Nanoscale. 2015. V. 7. P. 10982. https://doi.org/10.1039/c5nr01204j
  12. Lai H.L., Wong N.B., Zhou X.T. et al. // Appl. Phys. Lett. 2000. V. 76. P. 294. https://doi.org/10.1063/1.125636
  13. Deng S.Z., Wu Z.S., Zhou J. et al. // Chem. Phys. Lett. 2002. V. 356. P. 511. https://doi.org/10.1016/S0009-2614(02)00403-7
  14. Li Z., Zhang J., Meng A. et al. // J. Phys. Chem. B. 2006. V. 110. P. 22382. https://doi.org/10.1021/jp063565b
  15. Sun X.H., Li C.P., Wong W.K. et al. // J.Am. Chem. Soc. 2002. V. 124. P. 14464. https://doi.org/10.1021/ja0273997
  16. Taguchi T., Igawa N., Yamamoto H. et al. // J.Am. Ceram. Soc. 2009. V. 88. P. 459. https://doi.org/10.1111/j.1551-2916.2005.00066.x
  17. Taguchi T., Igawa N., Yamamoto H. et al. // Physica E. 2005. V. 28. P. 431. https://doi.org/10.1016/j.physe.2005.05.048
  18. Taguchi T., Yamamoto S., Ohba H. // Appl. Surf. Sci. 2021. V. 551. P. 149421. https://doi.org/10.1016/j.apsusc.2021.149421 25
  19. Huczko A., Bystrzejewski M., Lange H. et al. // J. Phys. Chem. B. 2005. V. 109. P. 16244. https://doi.org/10.1021/jp050837m
  20. Zhou W.M., Yang B., Yang Z.X. et al. // Appl. Sci. 2008. V. 252. P. 5143. https://doi.org/10.1007/978-0-387-74132-1_2
  21. Wang X., Liew K.M. // J. Phys. Chem. С. 2011. V. 115. P. 10388. https://doi.org/10.1021/jp2005937
  22. Han Z., Zhu H., Zou Y. et al. // Phys. 2022. V. 38. P. 105658. https://doi.org/10.1016/j.rinp.2022.105658
  23. Menon M., Richter E., Mavrandonakis A. et al. // Phys. Rev. B. 2004. V. 69. P. 115322. https://doi.org/10.1103/PhysRevB.69.115322
  24. Vatankhah C., Badehian H.A. // Optik (Stuttg.). 2021. V. 237. P. 166740. https://doi.org/10.1016/j.ijleo.2021.166740
  25. Huang S.P., Wu D.S., Hu J.M. et al. // Opt. Express. 2007. V. 15. P. 10947. https://doi.org/10.1364/OE.15.010947
  26. Petrushenko I.K., Ivanov N.A. // Mod. Phys. Lett. B. 2013. V. 27. P. 29. https://doi.org/10.1142/S0217984913502102
  27. Afshoon Z., Movlarooy T. // Silicon. 2023. V. 15. P. 4149. https://doi.org/10.1007/s12633-023-02314-9
  28. Wu A., Song Q., Yang L. et al. // Comput. Theor. Chem. 2011. V. 977. P. 92. https://doi.org/10.1016/j.comptc.2011.09.013
  29. Zhao M.W., Xia Y.Y., Zhang R.Q. et al. // J. Chem. Phys. 2005. V. 122. P. 214707. https://doi.org/10.1063/1.1927520
  30. Li F., Xia Y.Y., Zhao M.W. et al. // J. Appl. Phys. 2005. V. 97. P. 104311. https://doi.org/10.1063/1.1891281
  31. He T., Zhao M.W., Xia Y.Y. et al. // J. Chem. Phys. 2006.V. 125. P. 194710. https://doi.org/10.1063/1.2360269
  32. Song J., Liu H., Henry D.J. // Comput. Mater. Sci. 2016. V. 125. P. 117. https://doi.org/10.1016/j.commatsci.2016.08.029
  33. Alferi G., Kimoto T. // Nanotechnology. 2009. V. 20. P. 285703. https://doi.org/10.1088/0957-4484/20/28/285703
  34. Alfieri G., Kimoto T. // J. Comput. Theor. Nanosci. 2012. V. 9. P. 1850. https://doi.org/10.1166/jctn.2012.2596
  35. Talla J.A. // Phys. Lett., Sect. A: Gen. Solid State Phys. 2019. V. 383. P. 2076. https://doi.org/10.1016/j.physleta.2019.03.040
  36. Ding R., Yintang Y., Lianx L. // J. Semicond. 2009. V. 30. P. 114010. https://doi.org/10.1088/1674-4926/30/11/114010
  37. Itas Y.S., Suleiman A.B., Ndikilar C.E. et al. // Phys. Scr. 2023. V. 98. P. 015824. https://doi.org/10.1088/1402-4896/aca5cf
  38. Ansari R., Rouhi S., Aryayi M. et al. // Scientia Iranica. 2012. V. 19. P. 1984. https://doi.org/10.1016/j.scient.2012.10.004
  39. Setoodeh A.R., Jahanshahi M., Attariani H. // Comput. Mater. Sci. 2009. V. 47. P. 388. https://doi.org/10.1016/j.commatsci.2009.08.017
  40. Yang R., Hilder T.A., Chung S.H. et al. // J. Phys. Chem. С. 2011. V. 15. P. 17255. https://doi.org/10.1021/jp201882d
  41. Khademi M., Sahimi M. // J. Chem. Phys. 2011. V. 135. P. 204509. https://doi.org/10.1063/1.3663620
  42. Hilder T.A., Yang R., Gordon D. et al. // J. Phys. Chem. С. 2012. V. 116. P. 4465. https://doi.org/10.1021/jp2113335
  43. Yang S.H. // Appl. Phys. Lett. 2020. V. 116. P. 120502. https://doi.org/10.1063/1.5144921
  44. Yang S.H., Naaman R., Stuart P.Y. et al. // Nature Rev. Phys. 2021. V. 3. P. 328. https://doi.org/10.1038/s42254-021-00302-9
  45. Michaeli K., Kantor-Uriel N., Naaman R. et al. // Chem. Soc. Rev. 2016. V. 45. P. 6478. https://doi.org/10.1039/C6CS00369A
  46. Naaman R., Waldeck D.H. // Annu. Rev. Phys. Chem. 2015. V. 66. P. 263. https://doi.org/10.1146/annurev-physchem-040214-121554
  47. Yang S.H. // Appl. Phys. Lett. 2021. V. 16. P. 120502. https://doi.org/10.1063/5.0039147
  48. Waldeck D.H., Naaman R., Paltiel Y. // APL Mater. 2021. V. 9. P. 040902. https://doi.org/10.1063/5.0049150
  49. Wang X., Changjiang Y., Felser C. // Adv. Mater. 2024. V. 36. P. 230874. https://doi.org/10.1002/adma.202308746
  50. D’yachkov P.N. // Quantum chemistry of nanotubes: electronic cylindrical waves. London: Taylor and Francis, 2019. 212 p.
  51. D’yachkov P.N., Makaev D.V. // Phys. Rev. B. 2007. V. 76. P. 19541. https://doi.org/10.1103/PhysRevB.76.195411
  52. D’yachkov P.N., Makaev D.V. // Int. J. Quantum Chem. 2016. V. 116. P. 316. https://doi.org/10.1002/qua.25030
  53. D’yachkov P.N., D’yachkov E.P. // Appl. Phys. Lett. 2022. V. 120. P. 173101. https://doi.org/10.1063/5.0086902
  54. D’yachkov E.P., D’yachkov P.N. // J. Phys. Chem. С. 2019. V. 123. P. 26005. https://doi.org/10.1021/acs.jpcc.9b07610
  55. D’yachkov P.N., Krasnov D.O. // Chem. Phys. Lett. 2019. V. 720. P. 15. https://doi.org/10.1016/j.cplett.2019.02.006
  56. D’yachkov P.N. // J. Nanotechnol. Smart Mater. 2023. V. 9. P. 1208. https://doi.org/10.1109/5.771073
  57. Manchon A, Koo H.C., Nitta J. et al. // Nature Mater. 2015. V. 871. P. 4360. https://doi.org/10.1038/nmat4360
  58. Yeom J. // Acc. Mater. Res. 2021. V. 2. P. 471. https://doi.org/10.1021/accountsmr.1c00059
  59. Bercioux D., Lucignano P. // Rep. Prog. Phys. 2015. V. 78. P. 106001. https://doi.org/10.1088/0034-4885/78/10/106001
  60. Yan B. arXiv:2312.03902v1. 2023. https://doi.org/10.48550/arXiv.2312.03902
  61. Ray K., Ananthavel S.P., Waldeck D.H. et al. // Science.1999. V. 283. P. 814. https://doi.org/10.1126/science.283.5403.8
  62. Göhler B., Hamelbeck V., Markus T.Z. et al. // Science. 2011. V. 331. P. 894. https://doi.org/10.1126/science.1199339
  63. Yeganeh S., Ratner M.A., Medina E. et al. // J. Chem. Phys. 2009. V. 131. P. 014707. https://doi.org/10.1063/1.3167404
  64. Eremko A.A., Loktev V.M. // Phys. Rev. B. 2013. V. 88. P. 165409. https://doi.org/10.1103/PhysRevB.88.165409
  65. Gutierrez R., Díaz E., Naaman R. // Phys. Rev. B. 2012. V. 85. P. 081404. https://doi.org/10.1103/PhysRevB.85.081404
  66. Gutierrez R., Díaz E., Gaul C. et al. // J. Phys. Chem. С. 2013. V. 117. P. 22276. https://doi.org/10.1021/jp401705x
  67. Naaman R., Paltiel Y., Waldeck D.H. // Acc. Chem. Res. 2020. V. 53. P. 2659. https://doi.org/10.1021/acs.accounts.0c00485
  68. Michaeli K., Naaman R. // J. Phys. Chem. С. 2019. V. 123. P. 17043. https://doi.org/10.1021/acs.jpcc.9b05020
  69. Naaman R., Paltiel Y., Waldeck D.H. // J. Phys. Chem. Lett. 2020. V. 11. P. 3660. https://doi.org/10.1021/acs.jpclett.0c00474
  70. Fransson J. // J. Phys. Chem. Lett. 2019. V. 10. P. 7126. https://doi.org/10.1021/acs.jpclett.9b02929
  71. Fransson J. // J. Phys. Chem. Lett. 2022. V. 13. P. 808. https://doi.org/10.1021/acs.jpclett.1c03925

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of a typical SiC nanotube

Download (212KB)
3. Fig. 2. Electron and spin levels of a chiral nanotube (7, 5): general view of the band structure without taking into account the effects of spin-orbit splitting (a), enlarged image of electron levels in the region of the edges of the valence and conduction bands (b), spin-orbit splitting of the edges of these bands in right-handed (rh) (c) and left-handed (lh) nanotubes (d). The value of π/h = 6.39 a.u.–1

Download (324KB)
4. Fig. 3. Electron and spin levels of nanotubes (7, n2). Energy of gaps between the valence and conduction bands (a), spin-orbit splitting of the band edges in right-handed nanotubes (b)

Download (484KB)

Copyright (c) 2024 Russian Academy of Sciences