Novel double complex salts [M(im) n][RuNOCl5] (M = Ni, Cu): synthesis, structure, thermal properties

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Methods for the synthesis of new double complex salts [Cu(im)4][RuNOCl5], [Ni(im)6][RuNOCl5]·H2O and [Ni(im)4(DMF)2][RuNOCl5] have been developed and their crystalline crystalline properties have been determined. structure. The thermal properties of synthesized DCS were studied in inert and reducing atmospheres using synchronous TG–DTA/EGA–MS analysis and ex situ X-ray diffraction of intermediate and final thermolysis products. It has been established that thermal decomposition occurs in three stages. The final products of thermolysis of [Cu(im)4][RuNOCl5] in inert and reducing atmospheres are a mixture of copper and ruthenium, and the product of thermal decomposition of [Ni(im)6][RuNOCl5]·H2O in an inert atmosphere is a mixture of nickel and ruthenium. In the nickel-ruthenium system, upon thermolysis in a reducing atmosphere in the range of up to 400°C, it is possible to obtain a supersaturated solid solution of Ni0.27Ru0.73. Increasing the thermolysis temperature to 800°C leads to partial decomposition of the solid solution.

全文:

受限制的访问

作者简介

А. Borodin

Nikolaev Institute of Inorganic Chemistry

编辑信件的主要联系方式.
Email: borodin@niic.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

E. Filatov

Nikolaev Institute of Inorganic Chemistry

Email: borodin@niic.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

P. Plusnin

Nikolaev Institute of Inorganic Chemistry

Email: borodin@niic.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

N. Kuratieva

Nikolaev Institute of Inorganic Chemistry

Email: borodin@niic.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

S. Korenev

Nikolaev Institute of Inorganic Chemistry

Email: borodin@niic.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

G. Kostin

Nikolaev Institute of Inorganic Chemistry

Email: borodin@niic.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

参考

  1. Fukuda R., Takagi N., Sakaki S. et al. // J. Phys. Chem. С. 2017. V. 121. P. 300. https://doi.org/acs.jpcc.6b09280
  2. Martynova S.A., Filatov E.Yu., Korenev S.V. et al. // J. Solid State Chem. 2014. V. 212. P. 42. https://doi.org/10.1016/j.jssc.2014.01.008
  3. Liu J., Zhang L.L., Zhang J. et al. // Nanoscale. 2013. V. 22 P. 11044. https://doi.org/10.1039/C3NR03813K
  4. Thirumalai D., Lee J.-U., Choi H. et al. // Chem. Commun. 2021. V. 54. P. 1947. https://doi.org/10.1039/D0CC07518C
  5. Masson G.H.C., Cruz T.R., Gois P.D.S. et al. // New J. Chem. 2021. V. 45. P. 11466. https://doi.org/10.1039/D1NJ01498F
  6. Sreenavya A., Ahammed S., Ramachandran A. et al. // Catal. Letters. 2022. V. 152. P. 848. https://doi.org/10.1007/s10562-021-03673-x
  7. Elia N., Estephane J., Poupin C. et al. // ChemCatChem. 2021. V. 13. P. 1559. https://doi.org/10.1002/cctc.202001687
  8. Ishihara A., Qian E.W., Finahari I.N. et al. // Fuel. 2005. V. 84. P. 1462. https://doi.org/10.1016/j.fuel.2005.03.006
  9. Potemkin D.I., Saparbaev E.S., Zadesenets A.V. et al. // Catal. Ind. 2018. V. 10. P. 62. https://doi.org/10.1134/S2070050418010099
  10. Kostin G.A., Plyusnin P.E., Filatov E.Y. et al. // Polyhedron. 2019. V. 159. P. 217. https://doi.org/10.1016/j.poly.2018.11.065
  11. Filatov E.Yu., Borodin A.O., Kuratieva N.V. et al. // New J. Chem. 2022. V. 46. P. 19009. https://doi.org/10.1039/D2NJ03402F
  12. Плюснин П.Е., Шубин Ю.В., Коренев С.В. // Журн. структур. химии. 2022. Т. 63. № 3. С. 271.
  13. Mercer E.E., McAllister W.A., Durig J.R. // Inorg. Chem. 1966. V. 5. P. 1881. https://doi.org/10.1021/ic50045a010
  14. Archer S.J., Auf der Heyde T.P.E., Foulds G.A. et al. // Trans. Met. Chem. 1982. V. 7. P. 59. https://doi.org/10.1007/BF00623811
  15. Naumov P., Jovanovski G. // Spectrosc. Lett. 1999. V. 32. P. 237. https://doi.org/10.1080/00387019909349980
  16. Powder Diffraction File, PDF-2, International Centre for Diffraction Data, Pennsylvania, USA. Powder Diffr. File, PDF-2, Int. Cent. Diffr. Data, Pennsylvania, USA (2014).
  17. Kraus W., Nolze G. POWDERCELL 2.4. Program for the Representation and Manipulation of Crystal Structures and Calculation of the Resulting X-Ray Powder Patterns; Federal Institute for Materials Research and Testing: Berlin, 2000.
  18. Krumm S. An interactive Windows program for profile fitting and size/strain analysis, Mater. Sci. Forum, 1996. P. 228.
  19. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Crystallogr. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  20. Enemark J.H., Feltham R.D. // Coord. Chem. Rev. 1974. V. 13. P. 339. https://doi.org/10.1002/9780470145227.ch88
  21. Sanchis-Perucho A., Martínez-Lillo J. // Dalton Trans. 2019. V. 48. P. 13925. https://doi.org/10.1039/c9dt02884f
  22. Samoľova E., Kuchar J., Grzimek V. et al. // Polyhedron. 2019. V. 170. P. 51. https://doi.org/10.1016/j.poly.2019.05.024
  23. Pedersen A.H., Julve M., Martínez-Lillo J. et al. // Dalton Trans. 2017. V. 46. P. 16025. https://doi.org/10.1039/c7dt02216f
  24. Mwanza T., Kürkçüoğlu G.S., Ünver H. et al. // J. Solid State Chem. 2022. V. 314. P. 123344. https://doi.org/10.1016/j.jssc.2022.123344
  25. Jikun Li, Xianqiang Huang, Song Yang et al. // Cryst. Growth Des. 2015. V. 15. № 4. P. 1907. https://doi.org/10.1021/acs.cgd.5b00086
  26. Бородин А.О., Филатов Е.Ю., Куратьева Н.В. и др. // Журн. структур. химии. 2023. Т. 64. № 11. P. 118092. https://doi.org/10.26902/jsc_id118092
  27. Скорик Н.А., Ильина К.А., Козик В.В. // Журн. неорган. химии. 2021. Т. 66. № 11. С. 1597. https://doi.org/10.31857/S0044457X21110180
  28. Костин Г.А., Бородин А.О., Куратьева Н.В. и др. // Коорд. химия. 2013. Т. 39. № 4. С. 244. https://doi.org/10.7868/S0132344X13040063

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Calculated (1) and experimental (2) diffraction patterns for [Cu(im)4][RuNOCl5] (a) and [Ni(im)6][RuNOCl5] · H2O (b)

下载 (129KB)
3. Fig. 2. Cationic and anionic parts of the [Cu(im)4][RuNOCl5] DCS. Hydrogen atoms are not shown for clarity, thermal ellipsoids are given with a probability of 50% (a). Packing of anionic and cationic fragments in the [Cu(im)4][RuNOCl5] DCS (b)

下载 (233KB)
4. Fig. 3. Cationic and anionic fragments in the DCS [Ni(im)4(DMF)2][RuNOCl5]

下载 (90KB)
5. Fig. 4. Thermal analysis curves for [Cu(im)4][RuNOCl5] in inert (red lines) and reducing (black lines) atmospheres

下载 (278KB)
6. Fig. 5. Thermal analysis curves for [Ni(im)6][RuNOCl5] · H2O in inert (red lines) and reducing (black lines) atmospheres

下载 (261KB)
7. Fig. 6. Experimental diffraction patterns of the products of thermal decomposition of DCS [Cu(im)4][RuNOCl5] (a) and [Ni(im)6][RuNOCl5] · H2O (b) in a hydrogen atmosphere at different temperatures

下载 (198KB)
8. Fig. 7. Experimental diffraction patterns of the products of thermal decomposition in a hydrogen atmosphere of DCS [Cu(im)4][RuNOCl5] at 800C (a) and [Ni(im)6][RuNOCl5] H2O at 400C (b), theoretical diffraction patterns corresponding to metallic Cu, Ni, Ru and solid solution Ni0.27Ru0.73, as well as difference curves between the experimental diffraction pattern and the total theoretical

下载 (217KB)

版权所有 © Russian Academy of Sciences, 2024