Solid Solution in the Pseudobinary System Ba2YMoO6–[Ba2YCuO5]

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Samples of the pseudobinary system Ba2YMoO6–[Ba2YCuO5] were synthesized using the gel combustion method. The obtained samples were studied by X-ray diffraction and photoluminescence spectroscopy. By replacing Mo with Cu, it was possible to stabilize the cubic phases Fm3¯m and F4¯3m of the Ba2YMo1–xCuxO6–δ solid solution (0 ≤ x ≤ 0.5) in air.

Full Text

Restricted Access

About the authors

M. N. Smirnova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: smirnova_macha1989@mail.ru
Russian Federation, Moscow, 119991

M. A. Kopyeva

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Russian Federation, Moscow, 119991

G. D. Nipan

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Russian Federation, Moscow, 119991

G. E. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Russian Federation, Moscow, 119991

E. V. Tekshina

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Russian Federation, Moscow, 119991

A. A. Arkhipenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Russian Federation, Moscow, 119991

References

  1. Baur F., Jüstel T. // Opt. Mater. X. 2019. V. 1. P. 100015. https://doi.org/10.1016/j.omx.2019.100015
  2. Fuentes A.F., Hernández-Ibarra O., Mendoza-Suarez G. et al. // J. Solid State Chem. 2003. V. 173. № 2. P. 319. https://doi.org/10.1016/S0022-4596(03)00105-1
  3. Krishnan R., Swart H.C. // J. Phys. Chem. Solids. 2020. V. 144. P. 109519. https://doi.org/10.1016/j.jpcs.2020.109519
  4. Krishnan R., Kroon R.E., Swart H.C. // Mater. Res. Bull. 2022. V. 145. P. 111554. https://doi.org/10.1016/j.materresbull.2021.111554
  5. Ter Vrust J.W., Wanmaker W.L., Verriet J.G. // J. Inorg. Nucl. Chem. 1972. V. 34. № 2. P. 762. https://doi.org/10.1016/0022-1902(72)80459-7
  6. Qu Z., Zou Y., Zhang S. et al. // J. Appl. Phys. 2013. V. 113. № 17. P. 17E137. http://doi.org/ doi: 10.1063/1.4798342
  7. Li Q., Ren J., Cui J. et al. // Physica B. 2014. V. 451. P. 110. https://doi.org/10.1016/j.physb.2014.06.024
  8. Cussen E.J., Lynham D.R., Rogers J. // Chem. Mater. 2006. V. 18. № 12. P. 2855. https://doi.org/10.1021/cm0602388
  9. Смирнова М.Н., Копьева М.А., Нипан Г.Д. и др. // Докл. РАН. 2024. Т. 515. С. 30. https://doi.org/10.31857/S2686953524020032
  10. Кольцова Т.Н. // Инженерная физика. 2003. № 1. С. 9.
  11. Кольцова Т.Н. // Неорган. материалы. 2004. Т. 40. № 6. С. 751. https://elibrary.ru/item.asp?id=17659323
  12. Gavrichev K.S., Khoroshilov A.V., Nipan G.D. et al. // J. Therm. Anal. 1997. V. 48. № 5. P. 1039. https://doi.org/10.1007/bf01979152
  13. Brosha E.L., Garzon F.H., Raistrick I.D. et al. // J.Am. Ceram. Soc. 1995. V. 78. № 7. P. 1745. https://doi.org/10.1111/j.1151-2916.1995.tb08884.x
  14. Смирнова М.Н., Кондратьева О.Н., Никифорова Г.Е. и др. // Журн. неорган. химии. 2023. Т. 68. № 5. С. 581. https://doi.org/10.31857/S0044457X22602383
  15. Смирнова М.Н., Нипан Г.Д., Копьева М.А. и др. // Журн. неорган. химии. 2023. Т. 68. № 7. С. 896. https://doi.org/10.31857/S0044457X23600159
  16. Kitahama K., Hori Y., Kawai K. et al. // Jpn. J. Appl. Phys. 1991. V. 30. P. L809. https://doi.org/10.1143/JJAP. 30.L809
  17. Aharen T., Greedan J.E., Bridges C.A. et al. // Phys. Rev. B: Condens. Matter. 2010. V. 81. № 22. P. 224409. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.81.224409
  18. Maczka M., Hanuza J., Fuentes A.F. et al. // J. Phys.: Condens. Matter. 2004. V. 16. № 13. P. 2297. https://iopscience.iop.org/article/10.1088/0953-8984/16/13/010
  19. Yoon J.-W., Ryu J.H., Shim K.B. // Mater. Sci. Eng. 2006. V. 127. № 2–3. P. 154. https://doi.org/10.1016/j.mseb.2005.10.015
  20. Wang Z., Liang H., Gong M. et al. // Opt. Mater. 2007. V. 29. № 7. P. 896. https://doi.org/10.1016/j.optmat.2005.12.010
  21. Li L., Zhang J., Zi W. et al. // Solid State Sci. 2014. V. 29. P. 58. https://doi.org/10.1016/j.solidstatesciences.2014.01.003
  22. Qiao X., Tsuboi T. // J.Am. Ceram. Soc. 2017. V. 100. № 4. P. 1440. https://doi.org/10.1111/jace.14679
  23. Сухарева Т.В., Еременко В.В. // Физика твердого тела. 1997. Т. 39. № 10. С. 1739. https://elibrary.ru/item.asp?id=21317623
  24. Diaz-Guerra C. Piqueras J., Garcia J.A. et al. // J. Lumin. 1997. V. 71. № 4. P. 299. https://doi.org/10.1016/S0022-2313(97)00096-3
  25. Cavalcante L.S., Sczancoski J.C., Tranquilin R.L. et al. // J. Phys. Chem. Solids. 2008. V. 69. № 11. P. 2674. https://doi.org/10.1016/j.jpcs.2008.06.107
  26. Phuruangrat A., Thongtem T., Thongtem S. // J. Phys. Chem. Solids. 2009. V. 70. № 6. P. 955. https://doi.org/10.1016/j.jpcs.2009.05.006
  27. Wu X., Du J., Li H. et al. // J. Solid State Chem. 2007. V. 180. № 11. P. 3288. https://doi.org/10.1016/j.jssc.2007.07.010

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Investigated compositions in the concentration triangle of the Ba2Y2O5-BaMoO4-BaCuO2 system.

Download (120KB)
3. Fig. 2. Diffractograms of samples of Ba2YMo1-xCuxO6-δ system (0 ≤ x ≤ 0.5) at x = 0 (1), 0.1 (2), 0.2 (3), 0.25 (4), 0.33 (5), 0.5 (6).

Download (386KB)
4. Fig. 3. Dependence of the unit cell volume of Fm3m and F43m phases on the copper content (x) in Ba2YMo1-xCuxO6-δ samples (0 ≤ x ≤ 0.5).

Download (68KB)
5. Fig. 4. Exciton (1) and emission (2) spectra of the Ba2YCu0.5Mo0.5O6-δ sample.

Download (130KB)

Copyright (c) 2024 Russian Academy of Sciences