LOW-TEMPERATURE SYNTHESIS OF HIGHLY DISPERSED BARIUM ALUMINATE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new approach has been developed for the low-temperature synthesis of highly dispersed barium aluminate of vermicular morphology with specified characteristics (bulk density from 0.015 g/cm3, average particle size in the range of 15-87 nm). The synthesis technique includes sequential heat treatment up to 1200∘C of a concentrated aqueous solution of BaCl2, Al(NO3)3, (NH2)2CO and C6H8O7. Using physico-chemical research methods: IR spectroscopy, X-ray phase analysis, transmission and scanning electron microscopy, as well as chemical analysis, the main stages of the synthesis of BaAl2O4 are characterized.

About the authors

L. O. Kozlova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: kozzllova167@gmail.com
Moscow, Russia

I. L. Voroshilov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

Yu. V. Ioni

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University

Moscow, Russia; Moscow, Russia

Yu. D. Ivakin

Moscow State University

Moscow, Russia

I. V. Kozerozhets

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

M. G. Vasiliev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

References

  1. Wang Z., Wang Y., Subramanian M.A. et al. // Prog. Solid State Chem. 2022. V. 68.№100379. https://doi.org/10.1016/j.progsolidstchem.2022.100379
  2. Reza Rezaie M., Reza Rezaie H., Naghizadeh R. // Ceram. Int. 2009. V. 35. P. 2235. https://doi.org/10.1016/j.ceramint.2008.12.009
  3. Grigorovich K.V., Demin K.Y., Arsenkin A.M. et al. // Russ. Metall. 2011. V. 9. P. 912. https://doi.org/10.1134/S0036029511090126
  4. Pollmann H. // Rev. Mineral. Geochem. 2012. V. 74. P. 1. https://doi.org/10.2138/rmg.2012.74.1
  5. Djuri˘ic B., Pickering S., Mcgarry D. // J. Mater. Sci. 1999. V. 34. P. 2685. https://doi.org/10.1023/a:1004625405083
  6. Chen G. // J. Alloys Compd. 2006. V. 416. № 1–2. P. 279. https://doi.org/10.1016/j.jallcom.2005.08.059
  7. Seyidoglu T. // Open Ceram. 2023. V. 16. P. 100491. https://doi.org/10.1016/j.oceram.2023.100491
  8. Mohapatra M., Pattanaik D.M., Anand S. et al. // Ceram. Int. 2007. V. 33.№4. P. 531. https://doi.org/10.1016/j.ceramint.2005.10.019
  9. Singh V., Natarajan V., Kim D.-K. // Radiat. Eff. Defects Solids. 2008. V. 163.№3. P. 199. https://doi.org/10.1080/10420150701365854
  10. Yue Z., Zhong M., Ma H. et al. // J. Shanghai University. 2008. V. 12. P. 216. https://doi.org/10.1007/s11741-008-0306-1
  11. Zhuzhgov A.V., Kruglyakov V.Y., Suprun E.A. et al. // Russ. J. Appl. Chem. 2022. V. 95. P. 512. https://doi.org/10.1134/S1070427222040061
  12. Torrez-Herrera J.J., Korili S.A., Gil A. // Catal. Rev. 2022. V. 64.№3. P. 592. https://doi.org/10.1080/01614940.2020.1831756
  13. Rojas-Hernandez R.E., Rubio-Marcos F., Rodriguez M.A. et al. // Renew. Sust. Energ. Rev. 2018. V. 81. P. 2759. https://doi.org/10.1016/j.rser.2017.06.081
  14. Su Y., Chen C., Wang J. et al. // Ceram. Int. 2024. V. 50.№11. P. 18169. https://doi.org/10.1016/j.ceramint.2024.02.300
  15. Efimov A.A., Lizunova A.A., Volkov I.A. et al. // J. Phys.: Conf. Ser. 2016. V. 741. P. 012035. https://doi.org/10.1088/1742-6596/741/1/012035
  16. Malwal D., Packirisamy G. // Synthesis of Inorganic Nanomaterials. 2018. P. 255. https://doi.org/10.1016/B978-0-08-101975-7.00010-5
  17. Kumar A., Dixit C.K. // Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. 2017. P. 43. https://doi.org/10.1016/B978-0-08-100557-6.00003-1
  18. Benourdja S., Kaynar Umit H., Ayvacikli M. et al. // Appl. Radiat. Isot. 2018. V. 139. P. 34. https://doi.org/10.1016/j.apradiso.2018.04.023
  19. Lephoto M.A., Ntwaeaborwa O.M., Pitale S.S. et al. // Phys. B: Condens. Matter. 2012. V. 407. № 10. P. 1603. https://doi.org/10.1016/j.physb.2011.09.096
  20. Kozerozhets I., Semenov E., Kozlova L. et al. // Mater. Chem. Phys. 2023. V. 309. P. 128387. https://doi.org/10.1016/j.matchemphys.2023.128387
  21. Ianos R., Lazau R., Boruntea R.C. // Ceram. Int. 2015. V. 41.№2. P. 3186. https://doi.org/10.1016/j.ceramint.2014.10.171
  22. Kozerozhets I.V., Semenov E.A., Avdeeva V.V. et al. // Ceram. Int. 2023. V. 49.№18. P. 30381. https://doi.org/10.1016/j.ceramint.2023.06.300
  23. Kozlova L.O., Ioni Yu.V., Son A.G. et al. // Russ. J. Inorg. Chem. 2023. V.68. P. 1744. https://doi.org/10.1134/S0036023623602374
  24. Perier-Camby L., Thomas G. // Solid State Ionics. 1993. V. 63–65. P. 128. https://doi.org/10.1016/0167-2738(93)90095-K
  25. Panasyuk G.P., Luchkov I.V., Kozerozhets I.V. et al. // Inorg. Mater. 2013. V. 49. P. 899. https://doi.org/10.1134/S0020168513090136
  26. Panasyuk G.P., Azarova L.A., Belan V.N. et al. // Theor. Found. Chem. Eng. 2018. V. 52. P. 879. https://doi.org/10.1134/S0040579518050202
  27. Селюнина Л.А., Мишенина Л.Н., Кузнецова Е.В. и др. // Изв. ТПУ. 2014. Т. 324.№3. С. 67.
  28. Wang L., Hu J., Cheng Y. et al. // Scripta Mater. 2015. V. 107. P. 59. https://doi.org/10.1016/j.scriptamat.2015.05.020

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences