Synthesis and Physicochemical Characterization of Solid Oxide Electrolyte and Electrode Materials for Medium Temperature Fuel Cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Finely dispersed СeO2–Nd2O3 and Gd2O3–La2O3–SrO–Ni(Co)2O3–δ mesoporous powders are synthesized by co-crystallization of the corresponding nitrates solutions with ultrasonic treatment and used to prepare nanoceramic materials with a fluorite-like, orthorhombic perovskite and tetragonal perovskite crystal structures respectively with CSR ~ 55–90 нм (1300ºC). The study of physicochemical properties of the obtained ceramic materials revealed an open porosity 7–11% for СeO2–Nd2O3 and 17–42% for Gd2O3–La2O3–SrO–Ni(Co)2O3–ä. Cerium oxide-based materials possess a predominantly ionic electrical conductivity with σ700ºС = 0.31 · 10–2 S/cm (ion transfer number ti = 0.71–0.89 in the temperature range 300–700°C) due to the formation of mobile oxygen vacancies at heterovalent substitution of Nd3+ for Се4+. Solid solutions based on lanthanum nickelate and cobaltite feature a mixed electronic-ionic conductivity with σ700°С = 0.59 ∙ 10–1 S/cm with the electron and ion transfer numbers te = 0.92–0.99 and ti = 0.08–0.01. The obtained ceramic materials are shown to be promising as solid oxide electrolyrtes and electrodes for medium temperature fuel cells.

Full Text

Restricted Access

About the authors

M. V. Kalinina

Institute of Silicate Chemistry of Russian Academy of Sciences

Author for correspondence.
Email: tikhonov_p-a@mail.ru
Russian Federation, Saint Petersburg

I. G. Polyakova

Institute of Silicate Chemistry of Russian Academy of Sciences

Email: tikhonov_p-a@mail.ru
Russian Federation, Saint Petersburg

S. V. Mjakin

Saint Petersburg State Institute of Technology; Institute for Analytical Instrumentation of Russian Academy of Sciences

Email: tikhonov_p-a@mail.ru
Russian Federation, Saint Petersburg; Saint Petersburg

T. V. Khamova

Institute of Silicate Chemistry of Russian Academy of Sciences

Email: tikhonov_p-a@mail.ru
Russian Federation, Saint Petersburg

L. N. Efimova

Institute of Silicate Chemistry of Russian Academy of Sciences

Email: tikhonov_p-a@mail.ru
Russian Federation, Saint Petersburg

I. Yu. Kruchinina

Institute of Silicate Chemistry of Russian Academy of Sciences; LETI Saint Petersburg Electrotechnical University

Email: tikhonov_p-a@mail.ru
Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Maric R., Mirshekari G. Solid oxide fuel cells from fundamental principles to complete system. CRC Press, 2021. 256 p.
  2. Пономарева А.А., Иванова А.Г., Шилова О.А. и др. // Физика и химия стекла. 2016. Т. 42. № 1. С. 7.
  3. Ponomareva A., Babushok V., Simonenko E. et al. // J. Sol-Gel Sci. Technol. 2018. V. 87. № 1. P. 74. https://doi.org/10.1007/s10971-018-4712-0
  4. Galushko A.S., Panova G.G., Ivanova A.G. et al. // J. Ceram. Sci. Technol. 2017. V. 8. № 4. Р. 433. https://doi.org/10.4416/JCST2017-00041
  5. Pachauri Y.K., Chauhan R.P. // Renew. Sustain. Energy Rev. 2015. V. 43. P. 1301. https://doi.org/10.1016/j.rser.2014.11.098
  6. Касьянова А.В., Тарутина Л.Р., Руденко А.О. и др. // Успехи химии. 2020. Т. 89. № 6. С. 667.
  7. Пикалова Е.Ю., Калинина Е.Г. // Успехи химии. 2021. Т. 90. № 6. С. 703.
  8. Пальгуев С.Ф., Гильдерман В.К., Земцов В.И., Неуймин А.Д. Высокотемпературные оксидные электронные проводники для электрохимических устройств. М.: Наука, 1990. 196 с.
  9. SadykovV., Usoltsev V., Yeremeev N. et al. // J. Eur. Ceram. Soc. 2013. V. 33. № 12. P. 2241. https://doi.org/10.1016/j.jeurceramsoc.2013.01.007
  10. Симоненко Т.Л., Симоненко Н.П., Симоненко Е.П. и др. // Журн. неорган. химии. 2021. Т. 66. № 5. С. 610.
  11. Истомин С.Я., Лысков Н.В., Мазо Г.Н. и др. // Успехи химии. 2021. Т. 90. № 6. С. 644.
  12. Sadykov V.A., Pavlova S.N., Kharlamova T.S. et al. // Perovskites: structure, properties and uses. Nova Science Publishers, 2010. P. 67.
  13. Сальников В.В., Пикалова Е.Ю. // Физика тверд. тела. 2015. Т. 57. № 10. С. 1895.
  14. Moghadasi M., Li M., Ma C. et al. // Ceram. Int. 2020. V. 46. № 10. P. 16966. https://doi.org/10.1016/j.ceramint.2020.03.280
  15. Fathy A., Wagih A., Abu-Oqail A. // Ceram. Int. 2019. V. 45. № 2. P. 2319. https://doi.org/10.1016/j.ceramint.2018.10.147
  16. Li Z., He Q., Xia L. et al. // Int. J. Hydrogen Energy. 2022. V. 47. № 6. P. 4047. https://doi.org/10.1016/j.ijhydene.2021.11.022
  17. Prasad D.H., Son J.W., Kim B.K. et al. // J. Eur. Ceram. Soc. 2008. V. 28. P. 3107. https://doi.org/10.1016/j.jeurceramsoc.2008.05.021
  18. Fedorenko N.Yu., Mjakin S.V., Khamova T.V. et al. // Ceram. Int. 2022. V. 48. P. 6245. https://doi.org/10.1016/j.ceramint.2021.11.165
  19. Коваленко А.С., Шилова О.А., Морозова Л.В. и др. // Физика и химия стекла. 2014. Т. 40. № 1. С. 135.
  20. Duran P., Villegas M., Capel F. et al. // J. Eur. Ceram. Soc. 1996. V. 16. P. 945. https://doi.org/10.1016/0955-2219(96)00015-5
  21. Шилова О.А., Антипов В.Н., Тихонов П.А. и др. // Физика и химия стекла. 2013. Т. 39. № 5. С. 803.
  22. Пивоварова А.П., Страхов В.И., Попов В.П. // Письма в ЖТФ. 2002. Т. 28. № 19. С. 43.
  23. Гращенков Д.В., Балинова Ю.А., Тинякова Е.В. // Стекло и керамика. 2012. № 4. С. 32.
  24. Стрекаловский В.Н., Полежаев Ю.М., Пальгуев С.Ф. Оксиды с примесной разупорядоченностью: состав, структура, фазовые превращения. М.: Наука, 1987. 160 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Results of differential thermal analysis of nanopowder of Gd0.4Sr0.1Co0.5O3 composition obtained by co-crystallization of salts.

Download (95KB)
3. Fig. 2. X-ray diffraction patterns of nanopowder (1, 600С) and ceramic sample (2, 1300С) of composition (CeO2)0.85(Nd2O3)0.15 synthesized by co-crystallization of cerium and neodymium salts.

Download (59KB)
4. Fig. 3. X-ray diffraction patterns of nanopowder and ceramics of composition Gd0.25Sr0.25Co0.5O3- δ treated at 900 (1) and 1200С (2).

Download (86KB)
5. Fig. 4. Microphotographs of ceramics of composition Gd0.25Sr0.25Co0.5O3- after firing at 1200С at magnification of 240× (a) and 2000× (b).

Download (373KB)
6. Fig. 5. Temperature dependences of specific electrical conductivity of ceramic samples with ZnO sintering additive of composition (CeO2)1-x(Nd2O3)x, where x = 0.15 (1); 0.10 (2); 0.20 (3); 0.05 (4); 0.25 (5).

Download (89KB)
7. Fig. 6. Temperature dependences of specific electrical conductivity of ceramic samples of composition Gd0.25Sr0.25Co0.5O3-δ (1), Gd0.4Sr0.1Co0.5O3-δ with complex additive (2), Gd0.25Sr0.25Co0.5O3-δ without additive (3).

Download (86KB)

Copyright (c) 2024 Russian Academy of Sciences