Synthesis and Physicochemical Characterization of Solid Oxide Electrolyte and Electrode Materials for Medium Temperature Fuel Cells
- Authors: Kalinina M.V.1, Polyakova I.G.1, Mjakin S.V.2,3, Khamova T.V.1, Efimova L.N.1, Kruchinina I.Y.1,4
-
Affiliations:
- Institute of Silicate Chemistry of Russian Academy of Sciences
- Saint Petersburg State Institute of Technology
- Institute for Analytical Instrumentation of Russian Academy of Sciences
- LETI Saint Petersburg Electrotechnical University
- Issue: Vol 69, No 3 (2024)
- Pages: 286-293
- Section: SOLID STATE CHEMISTRY IN MODERN MATERIALS SCIENCE
- URL: https://rjraap.com/0044-457X/article/view/666593
- DOI: https://doi.org/10.31857/S0044457X24030037
- EDN: https://elibrary.ru/YFJEJP
- ID: 666593
Cite item
Abstract
Finely dispersed СeO2–Nd2O3 and Gd2O3–La2O3–SrO–Ni(Co)2O3–δ mesoporous powders are synthesized by co-crystallization of the corresponding nitrates solutions with ultrasonic treatment and used to prepare nanoceramic materials with a fluorite-like, orthorhombic perovskite and tetragonal perovskite crystal structures respectively with CSR ~ 55–90 нм (1300ºC). The study of physicochemical properties of the obtained ceramic materials revealed an open porosity 7–11% for СeO2–Nd2O3 and 17–42% for Gd2O3–La2O3–SrO–Ni(Co)2O3–ä. Cerium oxide-based materials possess a predominantly ionic electrical conductivity with σ700ºС = 0.31 · 10–2 S/cm (ion transfer number ti = 0.71–0.89 in the temperature range 300–700°C) due to the formation of mobile oxygen vacancies at heterovalent substitution of Nd3+ for Се4+. Solid solutions based on lanthanum nickelate and cobaltite feature a mixed electronic-ionic conductivity with σ700°С = 0.59 ∙ 10–1 S/cm with the electron and ion transfer numbers te = 0.92–0.99 and ti = 0.08–0.01. The obtained ceramic materials are shown to be promising as solid oxide electrolyrtes and electrodes for medium temperature fuel cells.
Full Text

About the authors
M. V. Kalinina
Institute of Silicate Chemistry of Russian Academy of Sciences
Author for correspondence.
Email: tikhonov_p-a@mail.ru
Russian Federation, Saint Petersburg
I. G. Polyakova
Institute of Silicate Chemistry of Russian Academy of Sciences
Email: tikhonov_p-a@mail.ru
Russian Federation, Saint Petersburg
S. V. Mjakin
Saint Petersburg State Institute of Technology; Institute for Analytical Instrumentation of Russian Academy of Sciences
Email: tikhonov_p-a@mail.ru
Russian Federation, Saint Petersburg; Saint Petersburg
T. V. Khamova
Institute of Silicate Chemistry of Russian Academy of Sciences
Email: tikhonov_p-a@mail.ru
Russian Federation, Saint Petersburg
L. N. Efimova
Institute of Silicate Chemistry of Russian Academy of Sciences
Email: tikhonov_p-a@mail.ru
Russian Federation, Saint Petersburg
I. Yu. Kruchinina
Institute of Silicate Chemistry of Russian Academy of Sciences; LETI Saint Petersburg Electrotechnical University
Email: tikhonov_p-a@mail.ru
Russian Federation, Saint Petersburg; Saint Petersburg
References
- Maric R., Mirshekari G. Solid oxide fuel cells from fundamental principles to complete system. CRC Press, 2021. 256 p.
- Пономарева А.А., Иванова А.Г., Шилова О.А. и др. // Физика и химия стекла. 2016. Т. 42. № 1. С. 7.
- Ponomareva A., Babushok V., Simonenko E. et al. // J. Sol-Gel Sci. Technol. 2018. V. 87. № 1. P. 74. https://doi.org/10.1007/s10971-018-4712-0
- Galushko A.S., Panova G.G., Ivanova A.G. et al. // J. Ceram. Sci. Technol. 2017. V. 8. № 4. Р. 433. https://doi.org/10.4416/JCST2017-00041
- Pachauri Y.K., Chauhan R.P. // Renew. Sustain. Energy Rev. 2015. V. 43. P. 1301. https://doi.org/10.1016/j.rser.2014.11.098
- Касьянова А.В., Тарутина Л.Р., Руденко А.О. и др. // Успехи химии. 2020. Т. 89. № 6. С. 667.
- Пикалова Е.Ю., Калинина Е.Г. // Успехи химии. 2021. Т. 90. № 6. С. 703.
- Пальгуев С.Ф., Гильдерман В.К., Земцов В.И., Неуймин А.Д. Высокотемпературные оксидные электронные проводники для электрохимических устройств. М.: Наука, 1990. 196 с.
- SadykovV., Usoltsev V., Yeremeev N. et al. // J. Eur. Ceram. Soc. 2013. V. 33. № 12. P. 2241. https://doi.org/10.1016/j.jeurceramsoc.2013.01.007
- Симоненко Т.Л., Симоненко Н.П., Симоненко Е.П. и др. // Журн. неорган. химии. 2021. Т. 66. № 5. С. 610.
- Истомин С.Я., Лысков Н.В., Мазо Г.Н. и др. // Успехи химии. 2021. Т. 90. № 6. С. 644.
- Sadykov V.A., Pavlova S.N., Kharlamova T.S. et al. // Perovskites: structure, properties and uses. Nova Science Publishers, 2010. P. 67.
- Сальников В.В., Пикалова Е.Ю. // Физика тверд. тела. 2015. Т. 57. № 10. С. 1895.
- Moghadasi M., Li M., Ma C. et al. // Ceram. Int. 2020. V. 46. № 10. P. 16966. https://doi.org/10.1016/j.ceramint.2020.03.280
- Fathy A., Wagih A., Abu-Oqail A. // Ceram. Int. 2019. V. 45. № 2. P. 2319. https://doi.org/10.1016/j.ceramint.2018.10.147
- Li Z., He Q., Xia L. et al. // Int. J. Hydrogen Energy. 2022. V. 47. № 6. P. 4047. https://doi.org/10.1016/j.ijhydene.2021.11.022
- Prasad D.H., Son J.W., Kim B.K. et al. // J. Eur. Ceram. Soc. 2008. V. 28. P. 3107. https://doi.org/10.1016/j.jeurceramsoc.2008.05.021
- Fedorenko N.Yu., Mjakin S.V., Khamova T.V. et al. // Ceram. Int. 2022. V. 48. P. 6245. https://doi.org/10.1016/j.ceramint.2021.11.165
- Коваленко А.С., Шилова О.А., Морозова Л.В. и др. // Физика и химия стекла. 2014. Т. 40. № 1. С. 135.
- Duran P., Villegas M., Capel F. et al. // J. Eur. Ceram. Soc. 1996. V. 16. P. 945. https://doi.org/10.1016/0955-2219(96)00015-5
- Шилова О.А., Антипов В.Н., Тихонов П.А. и др. // Физика и химия стекла. 2013. Т. 39. № 5. С. 803.
- Пивоварова А.П., Страхов В.И., Попов В.П. // Письма в ЖТФ. 2002. Т. 28. № 19. С. 43.
- Гращенков Д.В., Балинова Ю.А., Тинякова Е.В. // Стекло и керамика. 2012. № 4. С. 32.
- Стрекаловский В.Н., Полежаев Ю.М., Пальгуев С.Ф. Оксиды с примесной разупорядоченностью: состав, структура, фазовые превращения. М.: Наука, 1987. 160 с.
Supplementary files
