Ru nanoparticles on mesostructured carbon for glucose hydrogenation; catalysts synthesis and characterization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ru-containing hydrogenation catalysts based on functionalized carbon material CMK-3 (Carbon Mesostructured by KAIST) were developed. Mesostructured silicate SBA-15 with enlarged wall channels was used as a template for the carbon replica synthesis. The effect of carbon material functionalization via moist air oxidation and sulfonation on the morphology, physicochemical properties and activity of the catalyst was studied. The dispersion, localization, and electronic state of supported ruthenium were determined depending on the support functionalization method. The initial support structure preservation after Ru deposition was confirmed by a set of physicochemical methods. Metal particles are finely distributed with no agglomerated present, providing a high active site accessibility and ensures a superb catalyst activity. The catalysts were tested in glucose to sorbitol hydrogenation. The results showed that pore morphology and carbon support initial structure preservation account for the catalytic activity of Ru nanoparticles.

About the authors

Yu. N. Zaitseva

Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: j-n-zaitseva@yandex.ru
Russian Federation, Krasnoyarsk, 660036

V. V. Sychev

Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences

Email: j-n-zaitseva@yandex.ru
Russian Federation, Krasnoyarsk, 660036

V. V. Sychev

Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University

Email: j-n-zaitseva@yandex.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660041

V. А. Golubkov

Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences

Email: j-n-zaitseva@yandex.ru
Russian Federation, Krasnoyarsk, 660036

S. А. Novikova

Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences

Email: j-n-zaitseva@yandex.ru
Russian Federation, Krasnoyarsk, 660036

О. P. Taran

Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University

Email: j-n-zaitseva@yandex.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660041

S. D. Kirik

Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University

Email: j-n-zaitseva@yandex.ru
Russian Federation, Krasnoyarsk, 660036; Krasnoyarsk, 660041

References

  1. Demirbas A. // Energy Convers. Manage. 2009. V. 50. № 9. P. 2239. https://doi.org/10.1016/j.enconman.2009.05.010
  2. Awosusi A.A., Adebayo T.S., Altuntaş M. et al. // Energy Reports. 2022. V. 8. P. 1979. https://doi.org/https://doi.org/10.1016/j.egyr.2022.01.022
  3. Banu J.R., Kavitha S., Tyagi V.K. et al. // Fuel. 2021. V. 302. P. 121086. https://doi.org/10.1016/j.fuel.2021.121086
  4. Rowell R.M. Handbook of wood chemistry and wood composites. CRC press, 2012. 703 p.
  5. García B., Moreno J., Iglesias J. et al. // Top. Catal. 2019. V. 62. P. 570. https://doi.org/10.1007/s11244-019-01156-3
  6. Akpa B.S., D’Agostino C., Gladden L.F. et al. // J. Catal. 2012. V. 289. P. 30. https://doi.org/https://doi.org/10.1016/j.jcat.2012.01.011
  7. Maier S., Stass I., Cerdá J.I. et al. // Phys. Rev. Lett. 2014. V. 112. № 12. P. 126101. https://doi.org/10.1103/PhysRevLett.112.126101
  8. Tan J., Cui J., Deng T. et al. // ChemCatChem. 2015. V. 7. № 3. P. 508. https://doi.org/10.1002/cctc.201402834
  9. Ahorsu R., Constanti M., Medina F. // Ind. Eng. Chem. Res. 2021. V. 60. № 51. P. 18612. https://doi.org/10.1021/acs.iecr.1c02789
  10. Sudarsanam P., Zhong R., Van den Bosch S. et al. // Chem. Soc. Rev. 2018. V. 47. № 22. P. 8349. https://doi.org/10.1039/C8CS00410B
  11. Shrotri A., Kobayashi H., Fukuoka A. // Acc. Chem. Res. 2018. V. 51. № 3. P. 761. https://doi.org/10.1021/acs.accounts.7b00614
  12. Ryoo R., Joo S. H. // Stud. Surf. Sci. Catal. 2004. V. 148. P. 241. https://doi.org/10.1016/S0167-2991(04)80200-3
  13. Liang C., Li Z., Dai S. // Angew. Chem. Int. Ed. 2008. V. 47. № 20. P. 3696. https://doi.org/https://doi.org/10.1002/anie.200702046
  14. Воронова М.И., Суров О.В., Рублева Н.В., Захаров А.Г. // Журн. неорган. химии. 2022. T. 67. № 3. C. 416. https://doi.org/10.31857/S0044457X22030163
  15. Babaei Z., Yazdanpanah Esmaeilabad R., Orash N. et al. // Biomass Conversion and Biorefinery. 2023. V. 13. № 1. P. 61. https://doi.org/10.1007/s13399-020-01072-7
  16. Li L., Zhu Z.H., Lu G.Q. et al. // Carbon. 2007. Т. 45. № 1. Р. 11. https://doi.org/10.1016/j.carbon.2006.08.017
  17. Koskin A.P., Larichev Y.V., Mishakov I.V. et al. // Microporous Mesoporous Mater. 2020. V. 299. P. 110130. https://doi.org/10.1016/j.micromeso.2020.110130
  18. Аюшеев А.Б., Таран О.П., Афиногенова И.И. и др. // Журн. СФУ. Сер. Химия. 2016. Т. 9. № 3. C. 353. https://doi.org/10.17516/1998-2836-2016-9-3-353-370.
  19. Gao M., Wang L., Yang Y. et al. // ACS Catalysis. 2023. V. 13. № 7. P. 4060. https://doi.org/10.1021/acscatal.2c05894
  20. Verma P., Kuwahara Y., Mori K. et al. // Nanoscale. 2020. V. 12. № 21. P. 11333. https://doi.org/10.1039/D0NR00732C
  21. Grams J., Jankowska A., Goscianska J. // Microporous Mesoporous Mater. 2023. P. 112761. https://doi.org/10.1016/j.micromeso.2023.112761
  22. Zhao D., Huo Q., Feng J. et al. // J. Am. Chem. Soc. 1998. V. 120. № 24. P. 6024. https://doi.org/10.1021/ja974025i
  23. Parfenov V.A., Ponomarenko I.V., Novikova S.A. // Mater. Chem. Phys. 2019. V. 232. P. 193. https://doi.org/10.1016/j.matchemphys.2019.04.087
  24. Jun S., Joo S.H., Ryoo R. et al. // J. Am. Chem. Soc. 2000. V. 122. № 43. P. 10712. https://doi.org/10.1021/ja002261e
  25. Taran O.P., Polyanskaya E.M., Ogorodnikova O.L. et al. // Catalysis Industry. 2010. V. 2. № 4. P. 381.
  26. Сычев В.В., Барышников С.В., Иванов И.П. и др. // Журн. СФУ. Сер. Химия. 2021. Т. 14 № 1. С. 5.
  27. Ruiz-Matute A.I., Hernández-Hernández O., Rodríguez-Sánchez S. et al. // J. Chromatogr. B. 2011. V. 879. № 17–18. P. 1226. https://doi.org/10.1016/j.jchromb.2010.11.013
  28. Шабанова Н.А., Саркисов П.Д. Золь-гель технологии. Нанодисперсный кремнезем. М.: Бином, 2012. 328 с.
  29. Yu Y., Zhang Q., Chen X. et al. // Fuel Processing Technology. 2020. V. 197. P. 106195. https://doi.org/10.1016/j.fuproc.2019.106195
  30. Ding Y., Li X., Pan H., Wu P. // Catal. Letters. 2014. V. 44. Р. 268. https://doi.org/10.1007/s10562-013-1137-9
  31. Solovyov L.A., Kirik S.D., Shmakov A.N., Romannikov V.N. // Microporous and Mesoporous Mater. 2001. Т. 44. P. 17. https://doi.org/10.1016/S1387-1811(01)00164-0
  32. Solovyov L.A., Shmakov A.N., Zaikovskii V.I. et al. // Carbon. 2002. V. 40. № 13. P. 2477. https://doi.org/10.1016/S0008-6223(02)00160-4
  33. Li H., Xu T., Wang C. et al. // J. Phys. D: Appl. Phys. 2004. V. 38. № 1. P. 62.
  34. Полянская Е.М., Таран О.П. // Вестник ТГУ. Сер. Химия. 2017. № 10. C. 6.
  35. Boehm H.-P., Knözinger H. // Catalysis: Science and Technology. Berlin: Springer, 1983. 207 p.
  36. Toebes M.L., van Dillen J.A., de Jong K.P. // J. Mol. Catal. A: Chem. 2001. V. 173. № 1–2. P. 75. https://doi.org/10.1016/s1381-1169(01)00146-7
  37. Taran O., Polyanskaya E., Ogorodnikova O. et al. // Catalysis Industry. 2010. V. 2. № 4. P. 381.
  38. Li X., Guo T., Xia Q. et al. // ACS Sustainable Chem. Eng. 2018. V. 6. № 3. P. 4390. https://doi.org/10.1021/acssuschemeng.8b00012
  39. Morgan D.J. // Surf. Interface Anal. 2015. V. 47. № 11. P. 1072. https://doi.org/10.1002/sia.5852
  40. Wang W., Guo S., Lee I. et al. // Scientific Reports. 2014. V. 4. № 1. P. 1. https://doi.org/10.1038/srep04452
  41. Kerdi F., Rass H.A., Pinel C. et al. // Appl. Catal. A. 2015. Т. 506. Р. 206. https://doi.org/10.1016/j.apcata.2015.09.002
  42. Komanoya T., Kobayashi H., Hara K. et al. // J. Energy Chem. 2013. V. 22. № 2. Р. 290. https://doi.org/10.1016/S2095-4956(13)60035-2
  43. Pizova H., Malanik M., Smejkal K. et al. // RSC Adv. 2022. V. 12. № 13. Р. 8188. https://doi.org/10.1039/D2RA00441K
  44. Hu J., Ding Y., Zhang H. et al. // RSC Adv. 2016. V. 6. № 4. P. 3235. https://pubs.rsc.org/en/content/articlelanding/2016/ra/c5ra24362a/unauth
  45. Ahmed M.J., Hameed B.H. // J. Taiwan Institute Chem. Eng. 2019. V. 96. P. 341. https://doi.org/https://doi.org/10.1016/j.jtice.2018.11.028
  46. Yin W., Tang Z., Venderboschet R.H. et al. // ACS Catalysis. 2016. V. 6. № 7. P. 4411. https://doi.org/10.1021/acscatal.6b00296
  47. Kobayashi H., Matsuhashi H., Komanoya T. et al. // Chem. Commun. 2011. V. 47. № 8. P. 2366. https://doi.org/10.1039/C0CC04311G

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Application
Download (235KB)

Copyright (c) 2024 Russian Academy of Sciences