Влияние метода синтеза на морфологию и функциональные свойства обогащенных литием слоистых оксидов
- Авторы: Медведева А.Е.1, Махонина Е.В.1, Клименко М.М.1, Политов Ю.А.1, Румянцев А.М.2, Коштял Ю.М.2, Головешкин А.С.3, Курлыкин А.А.1
-
Учреждения:
- Институт общей и неорганической химии им. Н.С. Курнакова РАН
- Физико-технический институт им. А.Ф. Иоффе РАН
- Институт элементоорганических соединений им. А.Н. Несмеянова РАН
- Выпуск: Том 69, № 7 (2024)
- Страницы: 986-998
- Раздел: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://rjraap.com/0044-457X/article/view/666427
- DOI: https://doi.org/10.31857/S0044457X24070067
- EDN: https://elibrary.ru/XOHNDU
- ID: 666427
Цитировать
Аннотация
Получены обогащенные литием слоистые оксиды Li1.2Ni0.133Mn0.534Co0.133O2 твердофазной реакцией прекурсоров с источником лития и последующим высокотемпературным отжигом. Исследовано влияние метода синтеза прекурсора на функциональные свойства получаемого катодного материала. Прекурсоры синтезированы методом соосаждения (гидроксидный и карбонатный прекурсоры) и сольвотермальным методом (оксалатный и гидроксидные прекурсоры). В процессе синтеза варьировали следующие параметры: осадитель и рН осаждения при использовании метода соосаждения и комбинацию реакционная среда/осадитель в случае сольвотермального метода. Образец, полученный сольвотермальным методом, характеризуется высокими значениями разрядной емкости: 233.2 (0.1С) и 175.3 мАч/г (0.4С) с остаточной разрядной емкостью 94 (50 цикл) и 80.5% (65 цикл) соответственно. Образцы со сравнимыми электрохимическими показателями сходны по морфологии. Эти материалы агломерированы и характеризуются бимодальным распределением с максимумами в областях 14–19 и 55–60 мкм. Подход, учитывающий взаимосвязь морфологии с электрохимическими свойствами, позволит получать электродные материалы для литий-ионного аккумулятора с лучшими электрохимическими характеристиками.
Ключевые слова
Полный текст

Об авторах
А. Е. Медведева
Институт общей и неорганической химии им. Н.С. Курнакова РАН
Автор, ответственный за переписку.
Email: anna.ev.medvedeva@gmail.com
Россия, Ленинский пр-т, 31, Москва, 119991
Е. В. Махонина
Институт общей и неорганической химии им. Н.С. Курнакова РАН
Email: anna.ev.medvedeva@gmail.com
Россия, Ленинский пр-т, 31, Москва, 119991
М. М. Клименко
Институт общей и неорганической химии им. Н.С. Курнакова РАН
Email: anna.ev.medvedeva@gmail.com
Россия, Ленинский пр-т, 31, Москва, 119991
Ю. А. Политов
Институт общей и неорганической химии им. Н.С. Курнакова РАН
Email: anna.ev.medvedeva@gmail.com
Россия, Ленинский пр-т, 31, Москва, 119991
А. М. Румянцев
Физико-технический институт им. А.Ф. Иоффе РАН
Email: anna.ev.medvedeva@gmail.com
Россия, ул. Политехническая, 26, Санкт-Петербург, 194021
Ю. М. Коштял
Физико-технический институт им. А.Ф. Иоффе РАН
Email: anna.ev.medvedeva@gmail.com
Россия, ул. Политехническая, 26, Санкт-Петербург, 194021
А. С. Головешкин
Институт элементоорганических соединений им. А.Н. Несмеянова РАН
Email: anna.ev.medvedeva@gmail.com
Россия, ул. Вавилова, 28, стр. 1, Москва, 119334
А. А. Курлыкин
Институт общей и неорганической химии им. Н.С. Курнакова РАН
Email: anna.ev.medvedeva@gmail.com
Россия, Ленинский пр-т, 31, Москва, 119991
Список литературы
- Masias A., Marcicki J., Paxton W.A. // ACS Energy Lett. 2021. V. 6. № 2. P. 621. https://doi.org/10.1021/acsenergylett.0c02584
- Choi D., Shamim N., Crawford A. et al. // J. Power Sources. 2021. V. 511. P. 230419. https://doi.org/10.1016/j.jpowsour.2021.230419
- Malhotra A., Battke B., Beuse M. et al. // Renew. Sustain. Energy Rev. 2016. V. 56. P. 705. https://doi.org/10.1016/j.rser.2015.11.085
- Nitta N., Wu F., Lee J.T. et al. // Mater. Today. 2015. V. 18. № 5. P. 252. https://doi.org/10.1016/j.mattod.2014.10.040
- Murdock B.E., Toghill K.E., Tapia‐Ruiz N. // Adv. Energy Mater. 2021. V. 11. № 39. P. 2102028. https://doi.org/10.1002/aenm.202102028
- Ji X., Xia Q., Xu Y. et al. // J. Power Sources. 2021. V. 487. P. 229362. https://doi.org/10.1016/j.jpowsour.2020.229362
- Shukla A.K., Ramasse Q.M., Ophus C. et al. // Nat. Commun. 2015. V. 6. № 1. P. 8711. https://doi.org/10.1038/ncomms9711
- Genevois C., Koga H., Croguennec L. et al. // J. Phys. Chem. С. 2015. V. 119. № 1. P. 75. https://doi.org/10.1021/jp509388j
- Viji M., Budumuru A.K., Hebbar V. et al. // Energy Fuels. 2021. V. 35. № 5. P. 4533. https://doi.org/10.1021/acs.energyfuels.0c04061
- Guo L., Tan X., Mao D. et al. // Electrochim. Acta. 2021. V. 370. P. 137808. https://doi.org/10.1016/j.electacta.2021.137808
- Bian X., Zhang R., Yang X. // Inorg. Chem. 2020. V. 59. № 23. P. 17535. https://doi.org/10.1021/acs.inorgchem.0c02766
- Song B., Liu Z., Lai M.O. et al. // Phys. Chem. Chem. Phys. 2012. V. 14. № 37. P. 12875. https://doi.org/10.1039/c2cp42068f
- Hu E., Yu X., Lin R. et al. // Nat. Energy. 2018. V. 3. № 8. P. 690. https://doi.org/10.1038/s41560-018-0207-z
- Zheng H., Han X., Guo W. et al. // Mater. Today Energy. 2020. V. 18. P. 100518. https://doi.org/10.1016/j.mtener.2020.100518
- Fell C.R., Qian D., Carroll K.J. et al. // Chem. Mater. 2013. V. 25. № 9. P. 1621. https://doi.org/10.1021/cm4000119
- Lei Y., Ni J., Hu Z. et al. // Adv. Energy Mater. 2020. V. 10. № 41. P. 2002506. https://doi.org/10.1002/aenm.202002506
- Медведева А.Е., Махонина Е.В., Печень Л.С. и др. // Журн. неорган. химии. 2022. V. 67. № 7. P. 896.
- Печень Л.С., Махонина Е.В., Медведева А.Е. и др. // Докл. АН. Сер. Химия, науки о материалах. 2022. Т. 502. С. 66.
- Печень Л.С., Махонина Е.В., Медведева А.Е. и др. // Неорган. материалы. 2022. Т. 58. № 10. С. 1069.
- Fu F., Tang J., Yao Y. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 39. P. 25654. https://doi.org/10.1021/acsami.6b09118
- Li H., Wei X., Yang P. et al. // Electrochim. Acta. 2018. V. 261. P. 86. https://doi.org/10.1016/j.electacta.2017.10.119
- Fu F., Huang Y., Wu P. et al. // J. Alloys Compd. 2015. V. 618. P. 673. https://doi.org/10.1016/j.jallcom.2014.08.191
- Li H., Ren Y., Yang P. et al. // Electrochim. Acta. 2019. V. 297. P. 406. https://doi.org/10.1016/j.electacta.2018.10.195
- Luo W. // J. Alloys Compd. 2015. V. 636. P. 24. https://doi.org/10.1016/j.jallcom.2015.02.163
- Chen L., Su Y., Chen S. et al. // Adv. Mater. 2014. V. 26. № 39. P. 6756. https://doi.org/10.1002/adma.201402541
- Yu R., Zhang X., Liu T. et al. // ACS Sustain. Chem. Eng. 2017. V. 5. № 10. P. 8970. https://doi.org/10.1021/acssuschemeng.7b01773
- Kurilenko K.A., Shlyakhtin O.A., Brylev O.A. et al. // Electrochim. Acta. 2015. V. 152. P. 255. https://doi.org/10.1016/j.electacta.2014.11.045
- Ramesha R.N., Dasari Bosubabu, Karthick Babu M.G. et al. // ACS Appl. Energy Mater. 2020. V. 3. № 11. P. 10872. https://doi.org/10.1021/acsaem.0c01897
- Pechen L., Makhonina E., Medvedeva A. et al. // Nanomaterials. 2022. V. 12. № 22. P. 4054. https://doi.org/10.3390/nano12224054
- Pechen L.S., Makhonina E.V., Medvedeva A.E. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 5. P. 777. https://doi.org/10.1134/S0036023621050144
- Kleiner K., Strehle B., Baker A.R. et al. // Chem. Mater. 2018. V. 30. № 11. P. 3656. https://doi.org/10.1021/acs.chemmater.8b00163
- Strehle B., Kleiner K., Jung R. et al. // J. Electrochem. Soc. 2017. V. 164. № 2. P. A400. https://doi.org/10.1149/2.1001702jes
- Phillips P.J., Bareño J., Li Y. et al. // Adv. Energy Mater. 2015. V. 5. № 23. P. 1501252. https://doi.org/10.1002/aenm.201501252
- Shen S., Hong Y., Zhu F. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 15. P. 12666. https://doi.org/10.1021/acsami.8b00919
- Thackeray M.M., Kang S.-H., Johnson C.S. et al. // J. Mater. Chem. 2007. V. 17. № 30. P. 3112. https://doi.org/10.1039/b702425h
Дополнительные файлы
