Hydrothermal Synthesis and Photocatalytic Prореrties of Iron-Doped Tungsten Oxide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Substitutional solid solutions of the general formula h-W1–xFexO3, where 0.01 ≤ x ≤ 0.06, crystallizing in the hexagonal system based on h-WO3, were obtained using the hydrothermal synthesis method. It was shown that the crystal lattice of the synthesized compounds h-W1–xFexO3 is stabilized by NH4+ cations in hexagonal channels. Using quantum chemical calculations, it has been proven that doping with iron is realized by replacing cations in the tungsten sublattice, and not by intercalation into lattice channels. In this case, the dopant is not an independent participant in reactions involving h-W1–xFexO3, causing only the reorganization of the near-Fermi states of the h-WO3 matrix. It has been established that the region of solid solution homogeneity with respect to the dopant ion is determined by the pH of the working solution. The largest specific surface area, equal to 108 m2/g, has h-W0.94Fe0.06O3, synthesized at pH 2.3. Its photoactivity when applied to 1,2,4-trichlorobenzene is several times higher than that of m-W0.94Fe0.06O3.

Full Text

Restricted Access

About the authors

G. S. Zakharova

Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: volkov@ihim.uran.ru
Russian Federation, Ekaterinburg

N. V. Podvalnaya

Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: volkov@ihim.uran.ru
Russian Federation, Ekaterinburg

T. l. Gorbunova

Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences

Email: volkov@ihim.uran.ru
Russian Federation, Ekaterinburg

M. G. Реrvоva

Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences

Email: volkov@ihim.uran.ru
Russian Federation, Ekaterinburg

A. N. Enyashin

Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: volkov@ihim.uran.ru
Russian Federation, Ekaterinburg

References

  1. Cole B., Marsen B., Miller E. et al. // J. Phys. Chem. C. 2008. V. 112. № 13. P. 5213. https://doi.org/10.1021/ jp077624c
  2. Huang Z.-F., Song J., Pan L. et al. // AdV. Mater. 2015. V. 27. № 36. P. 5309. https://doi.org/10.1002/adma.201501217
  3. Филиппова А.Д., Румянцев А.А., Баранчиков А.Е. и др. // Журн. неорган. химии. 2022. Т. 67. № 6. С. 706.
  4. Zeng F., Wang J., Liu W. et al. // Electrochim. Acta. 2020. V. 334. P. 135641. https://doi.org/10.1016/j.electacta.2020.135641
  5. Ueda T., Maeda T., Huang Z. // Sens. Actuators, B: Chem. 2018. V. 273. P. 826. https://doi.org/10.1016/j.snb.2018.06.122
  6. Wen R., Granqvist C.G., Niklasson G.A. // Nature Mater. 2015. V. 14. № 10. P. 996. https://doi.org/10.1038/nmat4368
  7. Purushothaman K.K., Muralidharan G., Vijayakumar S. // Mater. Lett. 2021. V. 296. P. 129881. https://doi.org/10.1016/j.matlet.2021.129881
  8. Razali N.A.M., Salleh W.N.W., Aziz F. et al. // J. Clean. Prod. 2021. V. 309. P. 127438. https://doi.org/10.1016/j.jclepro.2021.127438
  9. Peleyeju M.G., Viljoen E.L. // J. Water Process Eng. 2021. V. 40. P. 101930. https://doi.org/10.1016/j.jwpe.2021.101930
  10. Desseignea M., Dirany N., Chevallier V., Arab M. // Appl. Surf. Sci. 2019. V. 483. P. 313. https://doi.org/10.1016/j.apsusc.2019.03.269
  11. Liang Y., Yang Y., Zou C. et al. // J. Alloys Compd. 2019. V. 783. P. 848. https://doi.org/10.1016/j.jallcom.2018.12.384
  12. Hernandez-Uresti D.B., Sánchez-Martínez D., Martínez-de la Cruz A. et al. // Ceram. Int. 2014. V. 40. № 3. P. 4767. https://doi.org/10.1016/j.ceramint.2013.09.022
  13. Zakharova G.S., Podval’naya N.V., Gorbunova T.I. et al. // J. Alloys Compd. 2023. V. 938. P. 168620. https://doi.org/10.1016/j.jallcom.2022.168620
  14. Dutta V., Sharma S., Raizada P. et al. // J. Environ. Chem. Eng. 2021. V. 9. № 1. P. 105018. https://doi.org/10.1016/j.jece.2020.10501
  15. Yuju S., Xiujuan T., Dongsheng S. et al. // Ecotoxicol. Environ. Saf. 2023. V. 259. P. 114988. https://doi.org/10.1016/j.ecoenv.2023.114988
  16. Козлов Д.А., Козлова Т.О., Щербаков А.Б. и др. // Журн. неорган. химии. 2020. Т. 65. № 7. С. 1088.
  17. Kozlov D.A., Kozlova T.O, Shcherbakov A.B. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 7. P. 1003. https://doi.org/10.1134/S003602362007013X
  18. Govindaraj T., Mahendran C., Marnadu R. et al. // Ceram. Int. 2021. V. 47. № 3. P. 4267. https://doi.org/10.1016/j.ceramint.2020.10.004
  19. Govindaraj T., Mahendran C., Chandrasekaran J. et al. // J. Phys. Chem. Solids. 2022. V. 170. P. 110908. https://doi.org/10.1016/j.jpcs.2022.110908
  20. Захарова Г.С., Подвальная Н.В., Горбунова Т.И., Первова М.Г. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 435.
  21. Shandilya P., Sambyal S., Sharma R. et al. // J. Hazard. Mater. 2022. V. 428. P. 128218. https://doi.org/10.1016/j.jhazmat.2022.128218
  22. Samuel O., Othman M.H.D., Kamaludin R. et al. // Ceram. Int. 2022. V. 48. № 5. P. 5845. https://doi.org/10.1016/j.ceramint.2021.11.158
  23. Murillo-Sierra J.C., Hernández-Ramírez A., Hinojosa-Reyes L., Guzmán-Mar J.L. // Chem. Eng. J. AdV. 2021. V. 5. P. 100070. https://doi.org/10.1016/j.ceja.2020.100070
  24. Shannow R.D. // Acta Crystallogr., Sect. A: Found. Crystallogr. 1976. V. 32. № 5. P. 751. https://doi.org/10.1107/S0567739476001551
  25. Renitta А., Vijayalakshmi K. // Catal. Commun. 2016. V. 73. P. 58. https://doi.org/10.1016/j.catcom.2015.10.014
  26. Sheng C., Wang C., Wang H. et al. // J. Hazard. Mater. 2017. V. 328. P. 127. https://doi.org/10.1016/j.jhazmat.2017.01.018
  27. Shen Y., Shou J., Chen L. et al. // Appl. Catal., A: General. 2022. V. 643. P. 118739. https://doi.org/10.1016/j.apcata.2022.118739
  28. Zhang Z., Had M., Wen Z. et al. // Appl. Surf. Sci. 2018. V. 434. P. 891. https://doi.org/10.1016/j.apsusc.2017.10.074
  29. Ilager D., Seo H., Shetti N.P., Kalanur S.S. // J. Environ. Chem. Eng. 2020. V. 8. № 6. P. 104580. https://doi.org/10.1016/j.jece.2020.104580
  30. Rajalakshmi R., Sivaselvam S., Ponpandian N. // Mater. Lett. 2021. V. 304. P. 130664. https://doi.org/10.1016/j.matlet.2021.130664
  31. Ma G., Chen Z., Chen Z. et al. // Mater. Today Eng. 2017. V. 3. P. 45. http://dx.doi.org/10.1016/j.mtener.2017.02.003
  32. Laxmi V., Kumar А. // Mater. Sci. Semicond. Process. 2019. V. 104. P. 104690. https://doi.org/10.1016/j.mssp.2019.104690
  33. Mehmood F., Iqbal J., Jan T., Mansoor Q. // J. Alloys Compd. 2017. V. 728. P. 1329. http://dx.doi.org/10.1016/j.jallcom.2017.08.234
  34. Gao H., Zhu L., Peng X. et al. // Appl. Surf. Sci. 2022. V. 592. P. 153310. https://doi.org/10.1016/j.apsusc.2022.153310
  35. Song H., Li Y., Lou Z. et al. // Appl. Catal. B: Environ. 2015. V. 166−167. P. 112. http://dx.doi.org/10.1016/j.apcatb.2014.11.020
  36. Merajin M.T., Nasiri M., Abedini E., Sharifnia S. // J. Environ. Chem. Eng. 2018. V. 6. № 5. P. 6741. https://doi.org/10.1016/j.jece.2018.10.037
  37. Ordejón P., Artacho E., Soler J.M. // Phys. Rev. B. 1996. V. 53. № 16. P. R10441(R). https://doi.org/10.1103/PhysRevB.53.R10441
  38. García A., Papiore N., Akhtar A. et al. // J. Chem. Phys. 2020. V. 152. № 20. P. 204108. https://doi.org/10.1063/5.0005077
  39. Patterson A.L. // Phys. Rev. Lett. 1939. V. 56. P. 978.
  40. Al-Kuhaili M.F., Drmosh Q.A. // Mater. Chem. Phys. 2022. V. 281. P. 125897. https://doi.org/10.1016/j.matchemphys.2022.125897
  41. Wang H., Zhang L., Zhou Y. et al. // Appl. Catal. B: Environ. 2020. V. 263. P. 118331. https://doi.org/10.1016/j.apcatb.2019.118331
  42. Sing K.S.W., Everett D.H., Haul R.A.W. et al. // Pure Appl. Chem. 1985. V. 57. № 4. P. 603. https://doi.org/10.1351/pac198557040603
  43. Thöny A., Rossi M.J. // J. Photochem. Photobiol. A. 1997. V. 104. № 1−3. P. 25. https://doi.org/10.1016/S1010-6030(96)04575-3
  44. Фаттахова З.А., Вовкотруб Э.Г., Захарова Г.С. // Журн. неорган. химии. 2021. Т. 66. № 1. С. 41.
  45. Fattakhova Z.A., Vovkotrub E.G., Zakharova G.S. // Russ. J. Inorg. Chem. 2021. V. 66. № 1. P. 35. https://doi.org/10.1134/S0036023621010022

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffractograms of tungsten oxide powders doped with iron(III), composition h-W1–xFexO3, synthesized at pH 1.7(a) and x = 0.01 (1), 0.03 (2), 0.05 (3), at pH 2.3 (b) and x = 0.01 (1), 0.03 (2), 0.06 (3). Calculated diffractograms and difference curves are additionally presented for samples with the maximum content of the dopant ion. The vertical lines indicate the positions of reflexes

Download (378KB)
3. Fig. 2. Concentration dependences of unit cell parameters a(a), c(b), V(c) for WO3 doped with iron(III) synthesized at pH 1.7 (1) and 2.3 (2)

Download (113KB)
4. Fig. 3. SEM images of h-W0.95Fe0.05O3 (a) and h-W0.94Fe0.06O3 (b) synthesized at pH 1.7 and 2.3. X-ray energy dispersion microanalysis spectrum for sample h-W0.94Fe0.06O3 (c). An additional peak from carbon is caused by the substrate, used to fix the sample

Download (604KB)
5. Fig. 4. IR (a) and Raman spectra (b) of h-WO3 (1), h-W0.95Fe0.05O3 (2) and h-W0.94Fe0.06O3 (3) synthesized at pH 1.7 and 2.3, respectively. Vaseline oil strips are marked with an asterisk

Download (231KB)
6. Fig. 5. TG, DSC, and MS curves for h-W0.95Fe0.05O3 (a) and h-W0.94Fe0.06O3 (b) synthesized at pH 1.7 and 2.3, respectively

Download (205KB)
7. Fig. 6. Electronic state densities (ED) calculated by the DFT method for h-WO3 and h-W1–xFexO3 with model compositions (NH4)0.33WO3 · 0.33H2O(a) and (NH4)0.50W0.95Fe0.05O3 · 0.33H2O (b) respectively

Download (243KB)
8. Fig. 7. Sorption isotherms (1 — adsorption, 2 — desorption) and pore size distribution curves (inserts) h-W0.95Fe0.05O3 (a) and h-W0.94Fe0.06O3 (b) obtained at pH 1.7 and 2.3, respectively

Download (225KB)
9. Fig. 8. Absorption spectra in the UV and visible ranges (a), dependences (ahv)1/2 on the photon energy (E) in the region of the absorption edge (b) for h-WO3 (1), h-W0.99Fe0.01O3 (2), h-W0.97Fe0.03O3 (3) and h-W0.94Fe0.06O3 (4) synthesized at pH 2.3

Download (271KB)
10. Supplementary
Download (241KB)

Copyright (c) 2024 Russian Academy of Sciences