Synthesis, Crystal Structure and Magnetic Properties of Y3–xCex(Fe0.5Ga0.5)5O12 (х = 0, 0.5)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The specific magnetisation and magnetic susceptibility of ferrogranates of the composition Y3–xCex(Fe0.5Ga0.5)5O12 (x = 0, 0.5) obtained by the gel combustion method have been measured. It was found that after synthesis and subsequent crystallisation at pressure ≈ 10–2 Pa at 1023 K for 2 h, the temperature of magnetic phase transformation in the studied compositions Y3–xCex(Fe0.5Ga0.5)5O12 increases with the replacement of yttrium ions Y3+ by Ce3+. Partial substitution of iron ions in the ferrogranate lattice by gallium leads to the appearance of antiferromagnetic ordering with sufficiently high Curie-Weiss temperature Θef.

Texto integral

Acesso é fechado

Sobre autores

Е. Romanova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ketsko@igic.ras.ru
Rússia, Moscow

M. Smirnova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ketsko@igic.ras.ru
Rússia, Moscow

G. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ketsko@igic.ras.ru
Rússia, Moscow

V. Ketsko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: ketsko@igic.ras.ru
Rússia, Moscow

K. Yanushkevich

Scientific and Practical Center for Materials Science of the National Academy of Sciences of Belarus

Email: ketsko@igic.ras.ru
Belarus, Minsk

Bibliografia

  1. Никитов С.А., Сафин А.Р., Калябин Д.В. и др. // УФН. 2020. Т. 190. № 10. С. 1009. https://doi.org/10.3367/UFNr.2019.07.038609
  2. Barman A., Gubbiotti G., Ladak S. et al. // J. Phys.: Condens. Matter. 2021. V. 33. P. 413001. https://doi.org/10.1088/1361-648X/abec1a
  3. Xiong D., Jiang Y., Shi K. et al. // Fundamental Research. 2022. V. 2. P. 522. https://doi.org/10.1016/j.fmre.2022.03.016
  4. Chumak A.V., Kabos P., Fellow L. et al. // IEEE Trans. Magn. 2022. V. 58. № 6. P. 0800172. https://doi.org/10.1109/TMAG.2022.3149664.
  5. Garskaite E., Gibson K., Leleckaite A. et al. // Chem. Phys. 2006. V. 323. P. 204. https://doi.org/10.1016/j.chemphys.2005.08.055
  6. McCloy J.S., Walsh B. // IEEE Trans. Magn. 2013. V. 49. № 7. P. 4253. https://doi.org/10.1109/TMAG.2013.2238510.
  7. Park M.B., Cho N.H. // J. Magn. Magn. Mater. 2001. V. 231. P. 253. https://doi.org/10.1016/S0304-8853(01)00068-3
  8. Shen T., Dai H., Song M. // J. Supercond. Nov. Magn. 2017. V. 30. P. 937. https://doi.org/10.1007/s10948-016-3880-9
  9. Gomi M., Furuyama H., Abe M. // J. Appl. Phys. 1991. V. 70. P. 7065. https://doi.org/10.1063/1.349786
  10. Рандошкин В.В., Червоненкис А.Я. // Прикладная магнитооптика. М.: Энергоатомиздат, 1990. 320 с.
  11. Shen T., Dai H., Song M. // J. Supercond. Nov. Magn. 2017. V. 30. P. 937. https://doi.org/10.1007/s10948–016–3880–9
  12. Huang M., Zhang S. // Appl. Phys. A. 2022. V. 74. P. 177. https://doi.org/10.1007/s003390100883
  13. Onbasli M. C., Beran L., Zahradnik M. et al. // Scientific Reports. 2016. Т. 6. № 1. С. 23640. https://doi.org/10.1038/srep23640
  14. Shen T., Dai H., Song M. // J. Supercond. Nov. Magn. 2017. V. 30. P. 937. https://doi.org/10.1007/s10948-016-3880-9
  15. Sharm V., Kuanr B.K. // J. Alloys Compd. 2018. V. 748. P. 591. https://doi.org/10.1016/j.jallcom.2018.03.086
  16. Huang M., Zhang S. // Appl. Phys. A. 2002. V. 74. P. 177. https://doi.org/10.1007/s003390100883
  17. Smirnova M.N., Glazkova I.S., Nikiforova G.E. et al. // Nanosystems: Physics, Chemistry, Mathematics. 2021. V. 12. № 2. P. 210. https://doi.org/10.17586/2220-8054-2021-12-2-210-217
  18. Teterin Yu.A., Smirnova M.N., Maslakov K.I. et al. // Dokl. Phys. Chem. 2022. V. 503. P. 45. https://doi.org/10.1134/S0012501622040029
  19. Тетерин Ю.А., Смирнова М.Н., Маслаков К.И. и др. // Журн. неорган. химии. 2023. Т. 68. № 7. С. 904. https://doi.org/10.31857/S0044457X23600135
  20. Смирнова М.Н., Копьева М.А., Береснев Э.Н. и др. // Журн. неорган. химии. 2018. Т. 63. С. 411. https://doi.org/10.1134/S0036023618040198
  21. Смирнова М.Н., Кондратьева О.Н., Никифорова Г.Е., Хорошилов А.В. // Журн. неорган. химии. 2023. Т. 68. № 5. С. 581. https://doi.org/10.31857/S0044457X22602383
  22. Маковецкий Г.И., Галяс А.И., Богуш А.К. и др. // Вести НАН Беларуси. Сер. физ.-тех. наук. 2000. № 3. С. 10.
  23. Winkler G. Magnetic Garnets. F. Viroeand Sohn: Braunshweig/Wiesbaden. 1981. 735 p.
  24. Крупичка С. Физика ферритов и родственных им магнитных окислов. М.: Мир, 1976. Т. 1. 360 с.
  25. Gu B.X., Zhang H.Y., Wang H., Zhai H.R. // J. Magn. Magn. Mater. 1997. V. 168. P. 31. https://doi.org/10.1016/S0304-8853(96)00696-8
  26. Scott G.B., Lacklison D.E., Page J.L. // J. Phys. C: Solid State Phys. 1975. V. 8. P. 519. https://doi.org/10.1103/PhysRevB.10.971

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diffractograms Of Y3(Fe0.5Ga0.5)5O12 after synthesis and annealing in air at 1023 K(1) and Y2.5Ce0.5(Fe0.5Ga0.5)5O12 after synthesis and annealing in vacuum (2) and subsequent annealing in air at 1023 K (3)

Baixar (109KB)
3. Fig. 2. REM image of Y3(Fe0.5Ga0.5)5O12 after synthesis and annealing in air at 1023 K

Baixar (482KB)
4. Fig. 3. REM image Y2.5Ce0.5(Fe0.5Ga0.5)5O12 after synthesis and annealing in vacuum (a) and subsequent annealing in air (b)

Baixar (271KB)
5. Fig. 4. Temperature dependence of the specific magnetization and magnetic susceptibility (insert) of ferrogranate Y3(Fe0.5Ga0.5)5O12

Baixar (151KB)
6. Fig. 5. Temperature dependence of specific magnetization (σ, σ2) and magnetic susceptibility (10-2/χ) Y2.5Ce0.5Fe2.5Ga0.5O12 after synthesis and annealing at 1073 K in vacuum

Baixar (110KB)
7. Fig. 6. Temperature dependence of specific magnetization (σ, σ2) and magnetic susceptibility (10-2/χ) Y2.5Ce0.5Fe2.5Ga0.5O12 after synthesis, annealing at 1073 K in vacuum and isothermal exposure at 1073 K for 5 h

Baixar (100KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024