Basicity and Hydride-Donating Ability of Palladium(II) Hydride Complex with Diarylamido-bis-phosphine Pincer Ligand

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The hydride ion transfer and proton transfer are the key steps in the reactions of (de)hydrogenation, dehydrocoupling, production of H2, and reduction of CO2 with the participation of transition metal hydrides; complexes with bifunctional ligands often act as catalysts for these transformations. The aim of this work was to study the hydride-donating properties of pincer palladium(II) hydride (PNP)PdH (1; PNP is bis(2-diisopropylphosphino-4-methylphenyl)amide). For this purpose, its reaction with Lewis acids (BF3·Et2O, B(C6F5)3) was studied using IR and NMR spectroscopies combined with quantum chemical calculations (DFT/M06/def2-TZVP). Correlations between electrochemical reduction potentials of the corresponding cations and thermodynamic hydridity of the metal hydrides proposed in the literature were also applied. [(PNP)Pd(MeCN)][BF4] undergoes an irreversible two-electron reduction in acetonitrile (
 = –1.82 V). The use of the obtained potential in correlations gives an overestimated value of the hydride donating ability 
 It was found that the reaction of 1 with boron-containing Lewis acids unexpectedly leads to the protonation of the nitrogen atom of the pincer ligand with an impurity of water, rather than the reaction with the hydride ligand. According to DFT calculations, the proton affinity of the nitrogen atom is much higher than that of PdH, which determines its higher activity in protonation processes.

作者简介

V. Kulikova

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: nataliabelk@ineos.ac.ru
119334, Moscow, Russia

E. Shubina

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: nataliabelk@ineos.ac.ru
119334, Moscow, Russia

O. Filippov

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: nataliabelk@ineos.ac.ru
119334, Moscow, Russia

D. Yakhvarov

A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center,” Russian Academy of Sciences; Kazan Federal University

Email: nataliabelk@ineos.ac.ru
420088, Kazan, Russia; 420008, Kazan, Russia

I. Sakhapov

A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center,” Russian Academy of Sciences

Email: nataliabelk@ineos.ac.ru
420008, Kazan, Russia

A. Kagilev

A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center,” Russian Academy of Sciences; Kazan Federal University

Email: nataliabelk@ineos.ac.ru
420088, Kazan, Russia; 420008, Kazan, Russia

Z. Gafurov

A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center,” Russian Academy of Sciences

Email: nataliabelk@ineos.ac.ru
420088, Kazan, Russia

E. Gutsul

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: nataliabelk@ineos.ac.ru
119334, Moscow, Russia

V. Kirkina

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: nataliabelk@ineos.ac.ru
119334, Moscow, Russia

N. Belkova

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: nataliabelk@ineos.ac.ru
119334, Moscow, Russia

参考

  1. Wang D., Astruc D. // Chem. Rev. 2015. V. 115. P. 6621. https://doi.org/10.1021/acs.chemrev.5b00203
  2. Werkmeister S., Neumann J., Junge K. et al. // Chem. Eur. J. 2015. V. 21. P. 12226. https://doi.org/10.1002/chem.201500937
  3. Pospech J., Fleischer I., Franke R. et al. // Angew. Chem. Int. Ed. 2013. V. 52. P. 2852. https://doi.org/10.1002/anie.201208330
  4. Dutta A., Appel A.M., Shaw W.J. // Nature Rev. Chem. 2018. V. 2. P. 244. https://doi.org/10.1038/s41570-018-0032-8
  5. DuBois D.L. // Inorg. Chem. 2014. V. 53. P. 3935. https://doi.org/10.1021/ic4026969
  6. Waldie K.M., Ostericher A.L., Reineke M.H. et al. // ACS Catal. 2018. V. 8. P. 1313. https://doi.org/10.1021/acscatal.7b03396
  7. Stanbury M., Compain J.-D., Chardon-Noblat S. // Coord. Chem. Rev. 2018. V. 361. P. 120. https://doi.org/10.1016/j.ccr.2018.01.014
  8. Sordakis K., Tang C., Vogt L.K. et al. // Chem. Rev. 2018. V. 118. P. 372. https://doi.org/10.1021/acs.chemrev.7b00182
  9. Francke R., Schille B., Roemelt M. // Chem. Rev. 2018. V. 118. P. 4631. https://doi.org/10.1021/acs.chemrev.7b00459
  10. Buss J.A., VanderVelde D.G., Agapie T. // J. Am. Chem. Soc. 2018. V. 140. P. 10121. https://doi.org/10.1021/jacs.8b05874
  11. Artz J., Müller T.E., Thenert K. et al. // Chem. Rev. 2018. V. 118. P. 434. https://doi.org/10.1021/acs.chemrev.7b00435
  12. Filippov O.A., Golub I.E., Osipova E.S. et al. // Russ. Chem. Bull. 2014. V. 63. P. 2428. https://doi.org/10.1007/s11172-014-0758-5
  13. Wiedner E.S., Chambers M.B., Pitman C.L. et al. // Chem. Rev. 2016. V. 116. P. 8655. https://doi.org/10.1021/acs.chemrev.6b00168
  14. Golub I.E., Filippov O.A., Belkova N.V. et al. // J. Organomet. Chem. 2018. V. 865. P. 247. https://doi.org/10.1016/j.jorganchem.2018.03.020
  15. Khusnutdinova J.R., Milstein D. // Angew. Chem. Int. Ed. 2015. V. 54. P. 12236. https://doi.org/10.1002/anie.201503873
  16. Gunanathan C., Milstein D. // Acc. Chem. Res. 2011. V. 44. P. 588. https://doi.org/10.1021/ar2000265
  17. Cohen S., Bilyachenko A.N., Gelman D. // Eur. J. Inorg. Chem. 2019. V. 2019. P. 3203. https://doi.org/10.1002/ejic.201801486
  18. Yang W., Filonenko G.A., Pidko E.A. // Chem. Commun. 2023. V. 59. P. 1757. https://doi.org/10.1039/D2CC05625A
  19. Fan L., Foxman B.M., Ozerov O.V. // Organometallics. 2004. V. 23. P. 326. https://doi.org/10.1021/om034151x
  20. Kirkina V.A., Kulikova V.A., Gutsul E.I. et al. // Inorganics. 2023. V. 11. P. 212. https://doi.org/10.3390/inorganics11050212
  21. Tshepelevitsh S., Kütt A., Lõkov M. et al. // Eur. J. Org. Chem. 2019. V. 2019. P. 6735. https://doi.org/10.1002/ejoc.201900956
  22. Raamat E., Kaupmees K., Ovsjannikov G. et al. // J. Phys. Org. Chem. 2013. V. 26. P. 162. https://doi.org/10.1002/poc.2946
  23. Kuejtt A., Leito I., Kaljurand I. et al. // J. Org. Chem. 2006. V. 71. P. 2829. https://doi.org/10.1021/jo060031y
  24. Belkova N.V., Epstein L.M., Filippov O.A. et al. // Chem Rev. 2016. V. 116. P. 8545. https://doi.org/10.1021/acs.chemrev.6b00091
  25. Golub I.E., Filippov O.A., Kulikova V.A. et al. // Molecules. 2020. V. 25. P. 2920. https://doi.org/10.3390/molecules25122920
  26. Golub I.E., Filippov O.A., Belkova N.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1639. https://doi.org/10.1134/S0036023621110073
  27. Frisch M.J., Trucks G.W., Schlegel H.B. et al. // Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2016.
  28. Zhao Y., Truhlar D.G. // Theor. Chem. Acc. 2008. V. 120. P. 215. https://doi.org/10.1007/s00214-007-0310-x
  29. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297. https://doi.org/10.1039/B508541A
  30. Andrae D., Haussermann U., Dolg M. et al. // Theor. Chim. Acta 1990. V. 77. P. 123. https://doi.org/10.1007/bf01114537
  31. Marenich A.V., Cramer C.J., Truhlar D.G. // J. Phys. Chem. B. 2009. V. 113. P. 6378. https://doi.org/10.1021/jp810292n
  32. Alig L., Fritz M., Schneider S. // Chem. Rev. 2019. V. 119. P. 2681. https://doi.org/10.1021/acs.chemrev.8b00555
  33. Osipova E.S., Kovalenko S.A., Gulyaeva E.S. et al. // Molecules. 2023. V. 28. P. 3368. https://doi.org/10.3390/molecules28083368
  34. Osipova E.S., Gulyaeva E.S., Kireev N.V. et al. // Chem. Commun. 2022. V. 58. P. 5017. https://doi.org/10.1039/D2CC00999D
  35. Wamser C.A. // J. Am. Chem. Soc. 1951. V. 73. P. 409. https://doi.org/10.1021/ja01145a134
  36. Zhou J., Litle E.D., Gabbaï F.P. // Chem. Commun. 2021. V. 57. P. 10154. https://doi.org/10.1039/D1CC04105C
  37. Longobardi L.E., Mahdi T., Stephan D.W. // Dalton Trans. 2015. V. 44. P. 7114. https://doi.org/10.1039/C5DT00921A
  38. Gregor L.C., Chen C.-H., Fafard C.M. et al. // Dalton Trans. 2010. V. 39. P. 3195. https://doi.org/10.1039/B925265G
  39. Belkova N.V., Epstein L.M., Shubina E.S. // ARKIVOC. 2008. V. iv. P. 120. https://doi.org/10.3998/ark.5550190.0009.413
  40. Pankratov A.N., Shchavlev A.E. // J. Analyt. Chem. 2001. V. 56. P. 123. https://doi.org/10.1023/A:1009438517429
  41. Kovačević B., Maksić Z.B. // Org. Lett. 2001. V. 3. P. 1523. https://doi.org/10.1021/ol0158415
  42. Glasovac Z., Kovačević B. // Int. J. Mol. Sci. 2022. V. 23. P. 10576. https://doi.org/10.3390/ijms23181057

补充文件

附件文件
动作
1. JATS XML
2.

下载 (21KB)
3.

下载 (12KB)
4.

下载 (231KB)
5.

下载 (29KB)
6.

下载 (46KB)
7.

下载 (165KB)
8.

下载 (122KB)
9.

下载 (165KB)

版权所有 © В.А. Куликова, В.А. Киркина, Е.И. Гуцул, З.Н. Гафуров, А.А. Кагилев, И.Ф. Сахапов, Д.Г. Яхваров, О.А. Филиппов, Е.С. Шубина, Н.В. Белкова, 2023