Basicity and Hydride-Donating Ability of Palladium(II) Hydride Complex with Diarylamido-bis-phosphine Pincer Ligand
- 作者: Kulikova V.A.1, Shubina E.S.1, Filippov O.A.1, Yakhvarov D.G.2,3, Sakhapov I.F.2, Kagilev A.A.2,3, Gafurov Z.N.2, Gutsul E.I.1, Kirkina V.A.1, Belkova N.V.1
-
隶属关系:
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center,” Russian Academy of Sciences
- Kazan Federal University
- 期: 卷 68, 编号 9 (2023)
- 页面: 1226-1234
- 栏目: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://rjraap.com/0044-457X/article/view/666233
- DOI: https://doi.org/10.31857/S0044457X23600858
- EDN: https://elibrary.ru/WPORKM
- ID: 666233
如何引用文章
详细
The hydride ion transfer and proton transfer are the key steps in the reactions of (de)hydrogenation, dehydrocoupling, production of H2, and reduction of CO2 with the participation of transition metal hydrides; complexes with bifunctional ligands often act as catalysts for these transformations. The aim of this work was to study the hydride-donating properties of pincer palladium(II) hydride (PNP)PdH (1; PNP is bis(2-diisopropylphosphino-4-methylphenyl)amide). For this purpose, its reaction with Lewis acids (BF3·Et2O, B(C6F5)3) was studied using IR and NMR spectroscopies combined with quantum chemical calculations (DFT/M06/def2-TZVP). Correlations between electrochemical reduction potentials of the corresponding cations and thermodynamic hydridity of the metal hydrides proposed in the literature were also applied. [(PNP)Pd(MeCN)][BF4] undergoes an irreversible two-electron reduction in acetonitrile (
= –1.82 V). The use of the obtained potential in correlations gives an overestimated value of the hydride donating ability
It was found that the reaction of 1 with boron-containing Lewis acids unexpectedly leads to the protonation of the nitrogen atom of the pincer ligand with an impurity of water, rather than the reaction with the hydride ligand. According to DFT calculations, the proton affinity of the nitrogen atom is much higher than that of PdH, which determines its higher activity in protonation processes.
作者简介
V. Kulikova
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: nataliabelk@ineos.ac.ru
119334, Moscow, Russia
E. Shubina
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: nataliabelk@ineos.ac.ru
119334, Moscow, Russia
O. Filippov
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: nataliabelk@ineos.ac.ru
119334, Moscow, Russia
D. Yakhvarov
A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center,” Russian Academy of Sciences; Kazan Federal University
Email: nataliabelk@ineos.ac.ru
420088, Kazan, Russia; 420008, Kazan, Russia
I. Sakhapov
A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center,” Russian Academy of Sciences
Email: nataliabelk@ineos.ac.ru
420008, Kazan, Russia
A. Kagilev
A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center,” Russian Academy of Sciences; Kazan Federal University
Email: nataliabelk@ineos.ac.ru
420088, Kazan, Russia; 420008, Kazan, Russia
Z. Gafurov
A.E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center,” Russian Academy of Sciences
Email: nataliabelk@ineos.ac.ru
420088, Kazan, Russia
E. Gutsul
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: nataliabelk@ineos.ac.ru
119334, Moscow, Russia
V. Kirkina
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: nataliabelk@ineos.ac.ru
119334, Moscow, Russia
N. Belkova
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: nataliabelk@ineos.ac.ru
119334, Moscow, Russia
参考
- Wang D., Astruc D. // Chem. Rev. 2015. V. 115. P. 6621. https://doi.org/10.1021/acs.chemrev.5b00203
- Werkmeister S., Neumann J., Junge K. et al. // Chem. Eur. J. 2015. V. 21. P. 12226. https://doi.org/10.1002/chem.201500937
- Pospech J., Fleischer I., Franke R. et al. // Angew. Chem. Int. Ed. 2013. V. 52. P. 2852. https://doi.org/10.1002/anie.201208330
- Dutta A., Appel A.M., Shaw W.J. // Nature Rev. Chem. 2018. V. 2. P. 244. https://doi.org/10.1038/s41570-018-0032-8
- DuBois D.L. // Inorg. Chem. 2014. V. 53. P. 3935. https://doi.org/10.1021/ic4026969
- Waldie K.M., Ostericher A.L., Reineke M.H. et al. // ACS Catal. 2018. V. 8. P. 1313. https://doi.org/10.1021/acscatal.7b03396
- Stanbury M., Compain J.-D., Chardon-Noblat S. // Coord. Chem. Rev. 2018. V. 361. P. 120. https://doi.org/10.1016/j.ccr.2018.01.014
- Sordakis K., Tang C., Vogt L.K. et al. // Chem. Rev. 2018. V. 118. P. 372. https://doi.org/10.1021/acs.chemrev.7b00182
- Francke R., Schille B., Roemelt M. // Chem. Rev. 2018. V. 118. P. 4631. https://doi.org/10.1021/acs.chemrev.7b00459
- Buss J.A., VanderVelde D.G., Agapie T. // J. Am. Chem. Soc. 2018. V. 140. P. 10121. https://doi.org/10.1021/jacs.8b05874
- Artz J., Müller T.E., Thenert K. et al. // Chem. Rev. 2018. V. 118. P. 434. https://doi.org/10.1021/acs.chemrev.7b00435
- Filippov O.A., Golub I.E., Osipova E.S. et al. // Russ. Chem. Bull. 2014. V. 63. P. 2428. https://doi.org/10.1007/s11172-014-0758-5
- Wiedner E.S., Chambers M.B., Pitman C.L. et al. // Chem. Rev. 2016. V. 116. P. 8655. https://doi.org/10.1021/acs.chemrev.6b00168
- Golub I.E., Filippov O.A., Belkova N.V. et al. // J. Organomet. Chem. 2018. V. 865. P. 247. https://doi.org/10.1016/j.jorganchem.2018.03.020
- Khusnutdinova J.R., Milstein D. // Angew. Chem. Int. Ed. 2015. V. 54. P. 12236. https://doi.org/10.1002/anie.201503873
- Gunanathan C., Milstein D. // Acc. Chem. Res. 2011. V. 44. P. 588. https://doi.org/10.1021/ar2000265
- Cohen S., Bilyachenko A.N., Gelman D. // Eur. J. Inorg. Chem. 2019. V. 2019. P. 3203. https://doi.org/10.1002/ejic.201801486
- Yang W., Filonenko G.A., Pidko E.A. // Chem. Commun. 2023. V. 59. P. 1757. https://doi.org/10.1039/D2CC05625A
- Fan L., Foxman B.M., Ozerov O.V. // Organometallics. 2004. V. 23. P. 326. https://doi.org/10.1021/om034151x
- Kirkina V.A., Kulikova V.A., Gutsul E.I. et al. // Inorganics. 2023. V. 11. P. 212. https://doi.org/10.3390/inorganics11050212
- Tshepelevitsh S., Kütt A., Lõkov M. et al. // Eur. J. Org. Chem. 2019. V. 2019. P. 6735. https://doi.org/10.1002/ejoc.201900956
- Raamat E., Kaupmees K., Ovsjannikov G. et al. // J. Phys. Org. Chem. 2013. V. 26. P. 162. https://doi.org/10.1002/poc.2946
- Kuejtt A., Leito I., Kaljurand I. et al. // J. Org. Chem. 2006. V. 71. P. 2829. https://doi.org/10.1021/jo060031y
- Belkova N.V., Epstein L.M., Filippov O.A. et al. // Chem Rev. 2016. V. 116. P. 8545. https://doi.org/10.1021/acs.chemrev.6b00091
- Golub I.E., Filippov O.A., Kulikova V.A. et al. // Molecules. 2020. V. 25. P. 2920. https://doi.org/10.3390/molecules25122920
- Golub I.E., Filippov O.A., Belkova N.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1639. https://doi.org/10.1134/S0036023621110073
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. // Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2016.
- Zhao Y., Truhlar D.G. // Theor. Chem. Acc. 2008. V. 120. P. 215. https://doi.org/10.1007/s00214-007-0310-x
- Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297. https://doi.org/10.1039/B508541A
- Andrae D., Haussermann U., Dolg M. et al. // Theor. Chim. Acta 1990. V. 77. P. 123. https://doi.org/10.1007/bf01114537
- Marenich A.V., Cramer C.J., Truhlar D.G. // J. Phys. Chem. B. 2009. V. 113. P. 6378. https://doi.org/10.1021/jp810292n
- Alig L., Fritz M., Schneider S. // Chem. Rev. 2019. V. 119. P. 2681. https://doi.org/10.1021/acs.chemrev.8b00555
- Osipova E.S., Kovalenko S.A., Gulyaeva E.S. et al. // Molecules. 2023. V. 28. P. 3368. https://doi.org/10.3390/molecules28083368
- Osipova E.S., Gulyaeva E.S., Kireev N.V. et al. // Chem. Commun. 2022. V. 58. P. 5017. https://doi.org/10.1039/D2CC00999D
- Wamser C.A. // J. Am. Chem. Soc. 1951. V. 73. P. 409. https://doi.org/10.1021/ja01145a134
- Zhou J., Litle E.D., Gabbaï F.P. // Chem. Commun. 2021. V. 57. P. 10154. https://doi.org/10.1039/D1CC04105C
- Longobardi L.E., Mahdi T., Stephan D.W. // Dalton Trans. 2015. V. 44. P. 7114. https://doi.org/10.1039/C5DT00921A
- Gregor L.C., Chen C.-H., Fafard C.M. et al. // Dalton Trans. 2010. V. 39. P. 3195. https://doi.org/10.1039/B925265G
- Belkova N.V., Epstein L.M., Shubina E.S. // ARKIVOC. 2008. V. iv. P. 120. https://doi.org/10.3998/ark.5550190.0009.413
- Pankratov A.N., Shchavlev A.E. // J. Analyt. Chem. 2001. V. 56. P. 123. https://doi.org/10.1023/A:1009438517429
- Kovačević B., Maksić Z.B. // Org. Lett. 2001. V. 3. P. 1523. https://doi.org/10.1021/ol0158415
- Glasovac Z., Kovačević B. // Int. J. Mol. Sci. 2022. V. 23. P. 10576. https://doi.org/10.3390/ijms23181057
补充文件
