On the Interaction of Gold(III) Complexes with Human Serum Albumin
- 作者: Mironov I.V.1, Kharlamova V.Y.1
-
隶属关系:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- 期: 卷 68, 编号 10 (2023)
- 页面: 1495-1503
- 栏目: ФИЗИКОХИМИЯ РАСТВОРОВ
- URL: https://rjraap.com/0044-457X/article/view/666202
- DOI: https://doi.org/10.31857/S0044457X23600639
- EDN: https://elibrary.ru/LSVTRF
- ID: 666202
如何引用文章
详细
The interaction of gold(III) complexes (Au(bipy)
, Au(phen)
, and Au(dien-H)Cl+) with human serum albumin (HSA) was studied in aqueous solutions (pH 7.4, CNaCl = 0.2 M, CAu = (2–10) × 10–5 M, CHSA < 6 × 10–4 M) at 25°C. In all cases, gold(III) is reduced to gold(I), which forms a complex with HSA. When an excess of HSA is present, the time required for complete transformation of the complexes does not exceed 1 h. In addition, it was shown that the redox reaction of gold(III) complexes with cysteine is much faster than the reaction with methionine.
作者简介
I. Mironov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: imir@niic.nsc.ru
630090, Novosibirsk, Russia
V. Kharlamova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: imir@niic.nsc.ru
630090, Novosibirsk, Russia
参考
- Dey D., Al-Hunaiti A., Gopal V. et al. // J. Mol. Struct. 2020. V. 1222. P. 128919. https://doi.org/10.1016/j.molstruc.2020.128919
- Корман Д.Б., Островская Л.А., Кузьмин В.А. // Вопросы онкологии. 2018. Т. 64. № 6. С. 697.
- Yeo C.I., Ooi K.K., Tiekink E.R.T. // Molecules. 2018. V. 23. P. 1410. https://doi.org/10.3390/molecules23061410
- Van der Westhuizen D., Bezuidenhout D.I., Munro O.Q. // Dalton Trans. 2021. V. 50. P. 17413. https://doi.org/10.1039/d1dt02783b
- Radisavljević S., Petrović B. // Front. Chem. 2020. V. 8. P. 379. https://doi.org/10.3389/fchem.2020.00379
- Yang Z., Jiang G., Xu Z. et al. // Coord. Chem. Rev. 2020. V. 423. 213492. https://doi.org/10.1016/j.ccr.2020.213492
- Lu Y., Ma X., Chang X. et al. // Chem. Soc. Rev. 2022. V. 51. P. 5518. https://doi.org/10.1039/d1cs00933h
- Zhang J., Li Y., Fang R. et al. // Front. Pharmacol. 2022. V. 13. 979951. https://doi.org/10.3389/fphar.2022.979951
- Moreno-Alcántar G., Picchetti P., Casini A. // Angew. Chem. Int. Ed. 2023. V. 62. Issue 22. e202218000. https://doi.org/10.1002/anie.202218000
- Bondžić A.M., Vasić Anićijević D.D., Janjić G.V. et al. // Curr. Med. Chem. 2021. V. 28. P. 4742. https://doi.org/10.2174/0929867328999210101233801
- Petrović V., Petrović S., Joksić G. et al. // J. Inorg. Biochem. 2014. V. 140. P. 228. https://doi.org/10.1016/j.jinorgbio.2014.07.015
- Radulović N.S., Stojanović N.M., Glišić B.Đ. et al. // Polyhedron. 2018. V. 141. P. 164. https://doi.org/10.1016/j.poly.2017.11.044
- Dickson P.N., Wehrli A., Geier G. // Inorg. Chem. 1988. V. 27. P. 2921. https://doi.org/10.1021/ic00290a006
- Миронов И.В., Харламова В.Ю. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 972.
- Миронов И.В., Харламова В.Ю., Ху Ц. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 342.
- Turell L., Radi R., Alvarez B. // Free Radic. Biol. Med. 2013. V. 65. P. 244. https://doi.org/10.1016/j.freeradbiomed.2013.05.050
- Brown D.H., Smith W.E. // Chem. Soc. Rev. 1980. P. 217. https://doi.org/10.1039/CS9800900217
- Zou T., Lum C.T., Lok C.-N. et al. // Chem. Soc. Rev. 2015. V. 44. P. 8786. https://doi.org/10.1039/c5cs00132c
- Walz D.T., DiMartino M. J., Griswold D.E. et al. // Am. J. Med. Oral Gold Symposium. 1983. V. 75. P. 90. https://doi.org/10.1016/0002-9343(83)90481-3
- Миронов И.В., Харламова В.Ю. // Журн. неорган. химии. 2017. Т. 62. № 12. С. 1672.
- Soni V., Sindal R.S., Mehrotra R.N. // Polyhedron. 2005. V. 24. P. 1167. https://doi.org/10.1016/j.poly.2005.03.057
- Миронов И.В. // Журн. неорган. химии. 2007. Т. 52. № 5. С. 857.
- Mironov I.V., Kharlamova V.Yu. // J. Solution Chem. 2020. V. 49. P. 583. https://doi.org/10.1007/s10953-020-00994-0
- Massai L., Grifagni D., De Santis A. et al. // Biomolecules. 2022. V. 12. P. 1675. https://doi.org/10.3390/biom12111675
- Roberts J.R., Xiao J., Schliesman B. et al. // Inorg. Chem. 1996. V. 35. P. 424. https://doi.org/10.1021/ic9414280
- Darabi F., Marzo T., Massai L. et al. // J. Inorg. Biochem. 2015. V. 149. P. 102. https://doi.org/10.1016/j.jinorgbio.2015.03.013
- Best S.L., Sadler P.J. // Gold Bull. 1996. V. 29. P. 87. https://doi.org/10.1007/BF03214741
- Gabbiani C., Massai L., Scaletti F. et al. // J. Biol. Inorg. Chem. 2012. V. 17. P. 1293. https://doi.org/10.1007/s00775-012-0952-6
- Massai L., Zoppi C., Cirri D. et al. // Front. Chem. 2020. V. 8. 581648. https://doi.org/10.3389/fchem.2020.581648
- Messori L., Cinellu M.A., Merlino A. // ACS Med. Chem. Lett. 2014. V. 5. P. 1110. https://doi.org/10.1021/ml500231b
- Pratesi A., Cirri D., Fregona D. et al. // Inorg. Chem. 2019. V. 58. P. 10616. https://doi.org/10.1021/acs.inorgchem.9b01900
- Pacheco E.A., Tiekink E.R.T., Whitehouse M.W. Gold Chemistry: Applications and Future Directions in the Life Sciences. Chapter 6: Gold Compounds and Their Applications in Medicine. WILEY-VCH Verlag GmbH & Co, 2009. 283 p.
- Messori L., Balerna A., Ascone I. et al. // J. Biol. Inorg. Chem. 2011. V. 16. P. 491. https:// doi.org/https://doi.org/10.1007/s00775-010-0748-5
- Casini A., Hartinger C., Gabbiani C. et al. // J. Inorg. Biochem. 2008. V. 102. P. 564. https://doi.org/10.1016/j.jinorgbio.2007.11.003
- Nobili S., Mini E., Landini I. et al. // Med. Res. Rev. 2010. V. 30. P. 550. https://doi.org/10.1002/med.20168
- Casini A., Cinellu M.A., Minghetti G. et al. // J. Med. Chem. 2006. V. 49. P. 5524. https://doi.org/10.1021/jm060436a
- Al-Maythalony B.A., Wazeer M.I.M., Isab A.A., Ahmad S. // Spectroscopy. 2010. V. 24. P. 567. https://doi.org/10.3233/SPE-2010-0478
- Đurović M.D., Bugarčić Ž.D., Heinemann F.W., Eldik R. // Dalton Trans. 2014. V. 43. P. 3911. https://doi.org/10.1039/C3DT53140F
- Glišić B.Đ., Djuran M.I., Stanić Z.D., Rajković S. // Gold Bull. 2014. V. 47. P. 33. https://doi.org/10.1007/s13404-013-0108-7
- Casini A., Diawara M.C., Scopelliti R. et al. // Dalton Trans. 2010. V. 39. P. 2239. https://doi.org/10.1039/b921019a
- Baddley W.H., Basolo F., Gray H.B. et al. // Inorg. Chem. 1963. V. 2. P. 921. https://doi.org/10.1021/ic50009a011
- Marcon G., Messori L., Orioli P. et al. // Eur. J. Biochem. 2003. V. 270. P. 4655. https://doi.org/10.1046/j.1432-1033.2003.03862.x
- Mirzadeh N., Reddy T.S., Bhargava S.K. // Coord. Chem. Rev. 2019. V. 388. P. 343. https://doi.org/10.1016/j.ccr.2019.02.027
- Kim J.H., Reeder E., Parkin S., Awuah S.G. // Sc. Rep. 2019. V. 9. P. 12335. https://doi.org/10.1038/s41598-019-48584-5
- Pavic A, Glišić B.Đ., Vojnovic S. et al. // J. Inorg. Biochem. 2017. V. 174. P. 156. https://doi.org/10.1016/j.jinorgbio.2017.06.009
- Landini I., Lapucci A., Pratesi A. et al. // Oncotarget. 2017. V. 8. P. 96062. https://doi.org/10.18632/oncotarget.21708
补充文件
