Solid solutions of pyridinium halobismuthates

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Solid solutions of pyridinium bromo-iodobismutates were isolated from aqueous solutions and structurally characterized. The composition of the resulting solid solutions [HPy]BiX4 and [HPy]3Bi2X9 (X = Br, I) was found to depend on the ratios of pyridinium/bismuth and bromine/iodine in the initial solution. The existence of five polymorphic modifications in the system for [HPy]BiX4 compounds was shown. Two different polymorphs were found for iodobismuthate [HPy]BiI4.

Texto integral

Acesso é fechado

Sobre autores

P. Buikin

HSE University; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: peterzzz@mail.ru
Rússia, 101000, Moscow; 119991 Moscow

A. Zhavoronkov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: peterzzz@mail.ru
Rússia, 119991 Moscow

A. Ilyukhin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: peterzzz@mail.ru
Rússia, 119991 Moscow

V. Kotov

HSE University; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: peterzzz@mail.ru
Rússia, 101000, Moscow; 119991 Moscow

Bibliografia

  1. Groom C.R., Bruno I.J., Lightfoot M.P. et al. // Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater. 2016. V. 72. № 2. P. 171. https://doi.org/10.1107/S2052520616003954
  2. Adonin S.A., Gorokh I.D., Novikov A.S. et al. // Chem. — A Eur. J. 2017. V. 23. № 62. P. 15612. https://doi.org/10.1002/chem.201703747
  3. Kotov V.Y., Ilyukhin A.B., Buikin P.A. et al. // Mendeleev Commun. 2019. V. 29. № 5. P. 537. https://doi.org/10.1016/j.mencom.2019.09.020
  4. Robertson B.K., McPherson W.G., Meyers E.A. // J. Phys. Chem. 1967. V. 71. № 11. P. 3531. https://doi.org/ 10.1021/J100870A028/ASSET/J100870A028.FP.PNG_V03
  5. Li T., Hu Y., Morrison C.A. et al. // Sustain. Energy Fuels. 2017. V. 1. № 2. P. 308. https://doi.org/10.1039/c6se00061d
  6. Balabanova S.P., Buikin P.A., Ilyukhin A.B. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 1018. https://doi.org/10.1134/S0036023622070038
  7. Usol’tsev A.N., Shentseva I.A., Shayapov V.R. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 10. P. 1482. https://doi.org/10.1134/S0036023621100193
  8. Buikin P.A., Ilyukhin A.B., Baranchikov A.E. et al. // Mendeleev Commun. 2018. V. 28. № 5. P. 490. https://doi.org/10.1016/j.mencom.2018.09.012
  9. Li A., Wu M., Zhang J. et al. // Dalton Trans. 2023. V. 52. № 16. P. 5065. https://doi.org/10.1039/D3DT00210A
  10. Hu X., Wang J., Mao W. et al. // ChemistrySelect. 2021. V. 6. № 5. P. 1099. https://doi.org/10.1002/SLCT.202004010
  11. Kotov V.Y., Ilyukhin A.B., Korlyukov A.A. et al. // New J. Chem. 2018. V. 42. № 8. P. 6354. https://doi.org/10.1039/c7nj04948j
  12. Chen Y., Yang Z., Guo C.X. et al. // Eur. J. Inorg. Chem. 2010. № 33. P. 5326. https://doi.org/10.1002/ejic.201000755
  13. Jóźków J., Medycki W., Zaleski J. et al. // Phys. Chem. Chem. Phys. 2001. V. 3. № 15. P. 3222. https://doi.org/10.1039/B102697F
  14. Tarasiewicz J., Jakubas R., Bator G. et al. // J. Mol. Struct. 2009. V. 932. № 1–3. P. 6. https://doi.org/10.1016/J.MOLSTRUC.2009.05.034
  15. Aurivillius B., Stålhandske C., Eriksen T.E. et al. // Acta Chem. Scand. 1978. V. 32a. P. 715. https://doi.org/10.3891/ACTA.CHEM.SCAND.32A-0715
  16. James S.C., Lawson Y.G., Norman N.C. et al. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2000. V. 56. № 4. P. 427 https://doi.org/10.1107/S0108270100000263/AV1032IISUP3.HKL
  17. Adonin S.A., Gorokh I.D., Novikov A.S. et al. // Polyhedron. 2018. V. 139. P. 282. https://doi.org/10.1016/j.poly.2017.11.002
  18. Li S.G., Chen L., Xiang Y. // J. Mol. Struct. 2017. V. 1130. P. 617. https://doi.org/10.1016/j.molstruc.2016.11.025
  19. Möbs J., Gerhard M., Heine J. // Dalton Trans. 2020. V. 49. № 41. P. 14397. https://doi.org/10.1039/D0DT03427D
  20. Brucker // APEX3 2016. Madison.
  21. Sheldrick G.M. // Programs Scaling Absorpt. Correct. Area Detect. Data, 1997.
  22. Sheldrick G.M. // TWINABS 2012/1, Bruker, Madison, Wisconsin, USA, 2012.
  23. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  24. Coelho A. // Bruker AXS GmbH 2009.
  25. Kubelka P., Munk F. // Z. Tech. Phys. 1931. V. 12. № 1930. P. 593. http://www.graphics.cornell.edu/~westin/pubs/kubelka.pdf
  26. Kotov V.Y., Lunkov I.S., Buikin P.A. et al. // New J. Chem. 2023. V. 47. № 5. P. 2666. https://doi.org/10.1039/D2NJ05184B
  27. Leblanc N., Mercier N., Allain M. et al. // J. Solid State Chem. 2012. V. 195. P. 140. https://doi.org/10.1016/j.jssc.2012.03.020
  28. Hu Y.Q., Hui H.Y., Lin W.Q. et al. // Inorg. Chem. 2019. V. 58. № 24. P. 16346. https://doi.org/10.1021/acs.inorgchem.9b01439

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Fragment of structure I.

Baixar (160KB)
3. Fig. 2. The dependence of the proportion of iodine in solid solutions (IEDX) on the iodine content in the mother liquor (Isolv) with a different ratio [HPy]+ : Bi3+.

Baixar (55KB)
4. Рис. 3. Зависимость значений оптической ширины запрещенной зоны (Eg) от доли иода в твердых растворах p3–p8 (IEDX). По оси у Еg, эВ.

Baixar (54KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024