High-Temperature Thermodynamic Properties of Hafnium and Rare Earth Oxide Ceramics
- Authors: Vorozhtcov V.A.1,2, Stolyarova V.L.1, Kirillova S.A.2,3, Lopatin S.I.1,2
-
Affiliations:
- St. Petersburg State University
- Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences
- St. Petersburg State Electrotechnical University “LETI”
- Issue: Vol 68, No 2 (2023)
- Pages: 209-220
- Section: ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ
- URL: https://rjraap.com/0044-457X/article/view/665305
- DOI: https://doi.org/10.31857/S0044457X22601055
- EDN: https://elibrary.ru/LOJKSH
- ID: 665305
Cite item
Abstract
Previous experimental data on the vaporization and high-temperature thermodynamic properties of hafnium and rare earth oxide ceramics are considered here. The La2O3–Sm2O3 system is for the first time studied at 2323 K using Knudsen effusion mass spectrometry. As a result of this study, the vapor composition over ceramic samples under investigation is identified, and concentration dependences of the partial pressures of vapor species over the system under study and condensed-phase thermodynamic properties are determined, namely, the component activities and the excess Gibbs energy. The enthalpy of formation from oxides and excess entropy of the La2O3–Sm2O3 system at 2323 K are determined using the Wilson polynomial. The Kohler, Redlich–Kister, and Wilson semiempirical methods were used to calculate the thermodynamic properties in the La2O3–Sm2O3–Y2O3–HfO2 and La2O3–Sm2O3–ZrO2–HfO2 quaternary systems at 2330 K using the equilibrium data gained in the relevant binary systems. The results of the calculations were compared to previous semiempirical estimates of the respective quantities for the La2O3–Y2O3–ZrO2–HfO2 and Sm2O3–Y2O3–ZrO2–HfO2 systems taken as examples. Calculations by the Wilson method are shown to provide the best match with the experimentally obtained lanthanoid oxide activities in the La2O3–Sm2O3–Y2O3–HfO2 and La2O3–Sm2O3–ZrO2–HfO2 systems.
About the authors
V. A. Vorozhtcov
St. Petersburg State University; Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences
Email: v.stolyarova@spbu.ru
199034, St. Petersburg, Russia; 199034, St. Petersburg, Russia
V. L. Stolyarova
St. Petersburg State University
Email: v.stolyarova@spbu.ru
199034, St. Petersburg, Russia
S. A. Kirillova
Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences; St. Petersburg State Electrotechnical University “LETI”
Email: v.stolyarova@spbu.ru
199034, St. Petersburg, Russia; 197022, St. Petersburg, Russia
S. I. Lopatin
St. Petersburg State University; Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: v.stolyarova@spbu.ru
199034, St. Petersburg, Russia; 199034, St. Petersburg, Russia
References
- Wang J., Li H.P., Stevens R. // J. Mater. Sci. 1992. V. 27. № 20. P. 5397. https://doi.org/10.1007/BF00541601
- Clarke D.R., Phillpot S.R. // Mater. Today. 2005. V. 8. № 6. P. 22. https://doi.org/10.1016/S1369-7021(05)70934-2
- Andrievskaya E.R. // J. Eur. Ceram. Soc. 2008. V. 28. № 12. P. 2363. https://doi.org/10.1016/j.jeurceramsoc.2008.01.009
- Pan W., Phillpot S.R., Wan C. et al. // MRS Bull. 2012. V. 37. № 10. P. 917. https://doi.org/10.1557/mrs.2012.234
- Darolia R. // Int. Mater. Rev. 2013. V. 58. № 6. P. 315. https://doi.org/10.1179/1743280413Y.0000000019
- Каблов Е.Н. Литые лопатки газотурбинных двигателей: сплавы, технологии, покрытия. М.: Наука, 2006. 632 с.
- Петрушин Н.В., Оспенникова О.Г., Светлов И.Л. // Авиац. материалы и технологии. 2017. Т. 49. С. 72.
- Cao X.Q., Vassen R., Stoever D. // J. Eur. Ceram. Soc. 2004. V. 24. № 1. P. 1. https://doi.org/10.1016/S0955-2219(03)00129-8
- Чубаров Д.A., Матвеев П.В. // Авиац. материалы и технологии. 2013. Т. 29. № 4. С. 43. https://www.elibrary.ru/item.asp?id=20421193
- Vassen R., Jarligo M.O., Steinke T. et al. // Surf. Coat. Technol. 2010. V. 205. № 4. P. 938. https://doi.org/10.1016/j.surfcoat.2010.08.151
- Казенас Е.К. Термодинамика испарения двойных оксидов. М.: Наука, 2004. 551 с. https://elibrary.ru/item.asp?id=19468800
- Lukas H.L., Fries S.G., Sundman B. Computational thermodynamics: The Calphad method. Cambridge: Cambridge University Press, 2007. 313 p. https://doi.org/10.1017/CBO9780511804137
- Schneider S.J., Roth R.S. // J. Res. Natl. Bur. Stand. A. Phys. Chem. 1960. V. 64A. № 4. P. 317. https://doi.org/10.6028/JRES.064A.031
- Coutures J., Rouanet A., Verges R., Foex M. // J. Solid State Chem. 1976. V. 17. № 1–2. P. 171. https://doi.org/10.1016/0022-4596(76)90218-8
- Корнієнко О.А. // Укр. хім. журн. 2018. Т. 84. № 3. С. 28.
- Zinkevich M. // Prog. Mater. Sci. 2007. V. 52. № 4. P. 597. https://doi.org/10.1016/J.PMATSCI.2006.09.002
- Казенас Е.К., Цветков Ю.В. Термодинамика испарения оксидов. М.: Изд-во ЛКИ, 2008. 480 с. https://elibrary.ru/item.asp?id=19470483
- Гурвич Л.В., Вейц И.В., Медведев В.А. и др. Термодинамические свойства индивидуальных веществ. Справочное издание / Отв. ред. Глушко В.П. М.: Наука, 1982. Т. IV. Кн. 2. 560 с.
- Shugurov S.M., Kurapova O.Y., Lopatin S.I. et al. // Rapid Commun. Mass Spectrom. 2017. V. 31. № 23. P. 2021. https://doi.org/10.1002/rcm.7997
- Ackermann R.J., Rauh E.G. // J. Chem. Thermodyn. 1971. V. 3. № 4. P. 445. https://doi.org/10.1016/S0021-9614(71)80027-7
- Walsh P.N., Goldstein H.W., White D. // J. Am. Ceram. Soc. 1960. V. 43. № 5. P. 229. https://doi.org/10.1111/J.1151-2916.1960.TB14589.X
- Goldstein H.W., Walsh P.N., White D. // J. Phys. Chem. 1961. V. 65. № 8. P. 1400. https://doi.org/10.1021/J100826A029
- Vorozhtcov V.A., Stolyarova V.L., Lopatin S.I. et al. // J. Alloys Compd. 2018. V. 735. P. 2348. https://doi.org/10.1016/J.JALLCOM.2017.11.319
- Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I., Shugurov S.M. // Russ. J. Gen. Chem. 2020. V. 90. № 5. P. 874. [Столярова В.Л., Ворожцов В.А., Лопатин С.И., Шугуров С.М. // Журн. общ. химии. 2020. Т. 90. № 5. С. 787. https://doi.org/10.31857/S0044460X20050194]https://doi.org/10.1134/S1070363220050199
- Hilpert K. // Rapid Commun. Mass Spectrom. 1991. V. 5. № 4. P. 175. https://doi.org/10.1002/rcm.1290050408
- Drowart J., Chatillon C., Hastie J., Bonnell D. // Pure Appl. Chem. 2005. V. 77. № 4. P. 683. https://doi.org/10.1351/pac200577040683
- Lopatin S.I., Shugurov S.M., Tyurnina Z.G., Tyurnina N.G. // Glass Phys. Chem. 2021. V. 47. № 1. P. 38. [Лопатин С.И., Шугуров С.М., Тюрнина З.Г., Тюрнина Н.Г. // Физика и химия стекла. 2021. Т. 47. № 1. С. 50. https://doi.org/10.31857/S0132665121010078]https://doi.org/10.1134/S1087659621010077
- Lopatin S.I. // Glass Phys. Chem. 2022. V. 48. № 2. P. 117. [Лопатин С.И. // Физика и химия стекла. 2022. Т. 48. № 2. С. 163. https://doi.org/10.31857/S0132665122020056]https://doi.org/10.1134/S1087659622020055
- Семенов Г.А., Николаев Е.Н., Францева К.Е. Применение масс-спектрометрии в неорганической химии. Л.: Химия. Ленингр. отд-ние, 1976. 151 с.
- Paule R.C., Mandel J. // Pure Appl. Chem. 1972. V. 31. № 3. P. 371. https://doi.org/10.1351/pac197231030371
- Zeifert P.L. // High Temperature Technology. N.Y.: John Wiley, 1956. P. 485.
- Сидоров Л.Н., Акишин П.А. // Докл. АН СССР. 1963. № 151. № 1. С. 136.
- Sidorov L.N., Shol’ts V.B. // Int. J. Mass Spectrom. Ion Phys. 1972. V. 8. № 5. P. 437. https://doi.org/10.1016/0020-7381(72)80014-7
- Redlich O., Kister A.T. // Ind. Eng. Chem. 1948. V. 40. № 2. P. 345. https://doi.org/10.1021/ie50458a036
- Wilson G.M. // J. Am. Chem. Soc. 1964. V. 86. № 2. P. 127. https://doi.org/10.1021/ja01056a002
- Orye R. V., Prausnitz J.M. // Ind. Eng. Chem. 1965. V. 57. № 5. P. 18. https://doi.org/10.1021/ie50665a005
- Hardy H.K. // Acta Metall. 1953. V. 1. № 2. P. 202. https://doi.org/10.1016/0001-6160(53)90059-5
- Hildebrand J.H. // J. Am. Chem. Soc. 1929. V. 51. № 1. P. 66. https://doi.org/10.1021/ja01376a009
- Kohler F. // Monatsh. Chem. 1960. V. 91. № 4. P. 738. https://doi.org/10.1007/BF00899814
- Vorozhtcov V.A., Kirillova S.A., Shilov A.L. et al. // Mater. Today Commun. 2021. V. 29. P. 102952. https://doi.org/10.1016/j.mtcomm.2021.102952
- Darken L.S. // J. Am. Chem. Soc. 1950. V. 72. № 7. P. 2909. https://doi.org/10.1021/ja01163a030
- Barker J.A. // J. Chem. Phys. 1952. V. 20. № 10. P. 1526. https://doi.org/10.1063/1.1700209
Supplementary files
