Thermodynamic Study of Sorption Processes of Gaseous Ferrocene on Organometallic Framework [Zn4(ndc)4(ur)2(dmf)]
- Authors: Zelenina L.N.1, Chusova T.P.1, Sapchenko S.A.1, Gelfond N.V.1
-
Affiliations:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Issue: Vol 68, No 2 (2023)
- Pages: 174-180
- Section: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://rjraap.com/0044-457X/article/view/665301
- DOI: https://doi.org/10.31857/S0044457X22601274
- EDN: https://elibrary.ru/LOTENW
- ID: 665301
Cite item
Abstract
The pressure of ferrocene in the system host (organometallic framework [Zn4(dmf)(ur)2(ndc)4])–guest (ferrocene) has been measured by static method with membrane zero-manometers in the temperature range from 324 to 462 K. As a result of the study, temperature dependences of pressure have been obtained for the transition of the guest from the host framework to the gas phase, the enthalpy and entropy of this process have been determined, and the change in the Gibbs energy during ferrocene binding by the framework has been calculated. Based on this information, conclusions have been made about the nature of interactions between host and guest molecules, and the obtained results have been compared with the previously studied benzene sorption on [Zn4(dmf)(ur)2(ndc)4].
About the authors
L. N. Zelenina
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: zelenina@niic.nsc.ru
630090, Novosibirsk, Russia
T. P. Chusova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: zelenina@niic.nsc.ru
630090, Novosibirsk, Russia
S. A. Sapchenko
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: zelenina@niic.nsc.ru
630090, Novosibirsk, Russia
N. V. Gelfond
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Author for correspondence.
Email: zelenina@niic.nsc.ru
630090, Novosibirsk, Russia
References
- Emam H.E., Abdelhameed R.M., Ahmed H.B. // J. Environ. Chem. Eng. 2020. V. 8. № 5. P. 104386. https://doi.org/10.1016/j.jece.2020.104386
- Hankari S., Bousmina M., Kadib A. // Prog. Mater. Sci. 2019. V. 106. P. 100579. https://doi.org/10.1016/j.pmatsci.2019.100579
- Humby J.D., Benson O., Smith G.L. et al. // Chem. Sci. 2019. V. 10. P. 1098. https://doi.org/10.1039/C8SC03622E
- Kato S., Drout R.J., Farha O.K. // Cell Rep. Phys. Sci. 2020. V. 1. P. 100006. https://doi.org/10.1016/j.xcrp.2019.100006
- Wei Y.-B., Wang M.-J., Luo D. et al. // Mater. Chem. Front. 2021. V. 5. P. 2416. https://doi.org/10.1039/D0QM01097A
- Drout R.J., Kato S., Chen H. et al. // J. Am. Chem. Soc. 2020. V. 142. № 28. P. 12357. https://doi.org/10.1021/jacs.0c04668
- Sha F., Tai T.-Y., Gaidimas M.A. et al. // Langmuir. 2022. V. 38. № 22. P. 6771. https://doi.org/10.1021/acs.langmuir.2c00812
- Cuadrado-Collados C., Rojas-Mayorga C.K., Saavedra B. et al. // J. Phys. Chem. C. 2019. V. 123. № 18. P. 11699. https://doi.org/10.1021/acs.jpcc.9b01381
- Ukraintseva E.A., Manakov A.Yu., Samsonenko D.G. et al. // J. Inclusion Phenom. Macrocyclic Chem. 2013. V. 77. P. 205. https://doi.org/10.1007/s10847-012-0234-5
- Huang Zh., Yu H., Wang L. et al. // Coord. Chem. Rev. 2021. V. 430. P. 213737. https://doi.org/10.1016/j.ccr.2020.213737
- Liu J., Wächter T., Irmler A. et al. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 18. P. 9824. https://doi.org/10.1021/acsami.5b01792
- Wang J., Han G., Wang L. et al. // Small. 2018. V. 14. № 15. P. 1704282. https://doi.org/10.1002/smll.201704282
- Sapchenko S.A., Dybtsev D.N., Samsonenko D.G. et al. // Chem. Commun. 2015. V. 51. P. 13918. https://doi.org/10.1039/C5CC05779E
- Sapchenko S.A., Samsonenko D.G., Dybtsev D.N. et al. // Dalton Trans. 2011. V. 40. P. 2196. https://doi.org/10.1039/C0DT00999G
- Sapchenko S.A., Samsonenko D.G., Dybtsev D.N. et al. // Inorg. Chem. 2013. V. 52. № 17. P. 9702. https://doi.org/10.1021/ic400940w
- Zelenina L.N., Chusova T.P., Sapchenko S.A. et al. // JCT. 2013. V. 57. P. 128. https://doi.org/10.1016/j.jct.2013.07.021
- Fulem M., Růžička K., Červinka C. et al. // JCT. 2013. V. 57 P. 530. https://doi.org/10.1016/j.jct.2012.07.023
- Суворов А.В. Термодинамическая химия парообразного состояния. Л.: Химия, 1970. С. 46.
- Zelenina L.N., Chusova T.P., Vasilyeva I.G. // JCT. 2013. V. 57. P. 101. https://doi.org/10.1016/j.jct.2012.08.005
- Zelenina L.N., Titov V.A., Chusova T.P. et al. // JCT. 2003. V. 35. P. 1601. https://doi.org/10.1016/S0021-9614(03)00123-X
- Zelenina L.N., Chusova T.P., Isakov A.V. et al. // JCT. 2020. V. 141. P. 105958. https://doi.org/10.1016/j.jct.2019.105958
- Zelenina L.N., Chusova T.P., Isakov A.V. et al. // JCT. 2021. V. 158. P. 106424. https://doi.org/10.1016/j.jct.2021.106424
- Титов В.А., Коковин Г.А. // Математические методы в химической термодинамике. Новосибирск: Наука, 1980. С. 98.
- Фундаментальные основы процессов химического осаждения пленок и структур для наноэлектроники / Под ред. Смирновой Т.П. Новосибирск: Изд-во СО РАН, 2013. 175 с.
- Zelenina L.N., Chusova T.P. // Russ. J. Gen. Chem. 2021. V. 91. P. 1984. https://doi.org/10.31857/S0044460X21100097
- Гурвич Л.В. // Вестн. АН СССР. 1983. № 3. С. 54.
Supplementary files
