Sinthesis and Properties of Hard Carbon Materials Made of Molybdenum-Doped Viscose Fiber for Negative Electrodes of Sodium-Ion Batteries

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Herein, a method for the preparation of hard carbon via carbonization of chemically modified (molybdenum-doped) commercially available viscose fiber was developed. The effects of a molybdenum dopant on carbonization conditions were studied. The carbonization products retained the fibrous structure and flexibility. The structural features of the synthesized hard carbon materials were investigated, and their relationships to the carbonization temperature and the amount of the molybdenum dopant were analyzed. The texture of materials was studied, and correlations between the specific surface area and porosity, on the one hand, and the synthesis conditions, on the other, were discovered. The usefulness of the products as anode materials for sodium-ion batteries was evaluated. The electrochemical tests, together the extant relevant data, indicate that molybdenum induces the structural rearrangement of the carbon framework upon annealing, accompanied by the growth and ordering of graphite-like nanoclusters. The material prepared at 1050°C exhibited the best electrochemical performances among the synthesized products and the stable cyclability with a capacity of 290 (mA h)/g at a current density of 25 mA/g.

About the authors

V. V. Zheleznov

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: ttt@ich.dvo.ru
690022, Vladivostok, Russia

N. S. Saenko

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: ttt@ich.dvo.ru
690022, Vladivostok, Russia

V. Yu. Maiorov

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: ttt@ich.dvo.ru
690022, Vladivostok, Russia

A. Yu. Ustinov

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: ttt@ich.dvo.ru
690022, Vladivostok, Russia

T. A. Sokol’nitskaya

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: ttt@ich.dvo.ru
690022, Vladivostok, Russia

V. G. Kuryavyi

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: ttt@ich.dvo.ru
690022, Vladivostok, Russia

D. Kh. Shlik

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: ttt@ich.dvo.ru
690022, Vladivostok, Russia

A. A. Sokolov

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: ttt@ich.dvo.ru
690022, Vladivostok, Russia

D. P. Opra

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Author for correspondence.
Email: ttt@ich.dvo.ru
690022, Vladivostok, Russia

References

  1. Xie F., Xu Z., Guo Z. et al. // Prog. Energy. 2020. V. 2. № 4. P. 042002. https://doi.org/10.1088/2516-1083/aba5f5
  2. Ma J., Li Y., Grundish N.S. et al. // J. Phys. D: Appl. Phys. 2021. V. 54. № 18. P. 183001. https://doi.org/10.1088/1361-6463/abd353
  3. Xu G., Amine R., Abouimrane A. et al. // Adv. Energy Mater. 2018. V. 8. № 14. P. 1702403. https://doi.org/10.1002/aenm.201702403
  4. Mukherjee S., Bin Mujib S., Soares D. et al. // Materials (Basel). 2019. V. 12. P. 1952. https://doi.org/10.3390/ma12121952
  5. Yu P., Tang W., Wu F.-F. et al. // Rare Met. 2020. V. 39. № 9. P. 1019. https://doi.org/10.1007/s12598-020-01443-z
  6. Simone V., Boulineau A., de Geyer A. et al. // J. Energy Chem. 2016. V. 25. № 5. P. 761. https://doi.org/10.1016/j.jechem.2016.04.016
  7. Li Y., Hu Y.-S., Titirici M.-M. et al. // Adv. Energy Mater. 2016. V. 6. № 18. P. 1600659. https://doi.org/10.1002/aenm.201600659
  8. Yamamoto H., Muratsubaki S., Kubota K. et al. // J. Mater. Chem. A. 2018. V. 6. № 35. P. 16844. https://doi.org/10.1039/C8TA05203D
  9. Hou H., Qiu X., Wei W. et al. // Adv. Energy Mater. 2017. V. 7. № 24. P. 1602898. https://doi.org/10.1002/aenm.201602898
  10. Wang W., Li W., Wang S. et al. // J. Mater. Chem. A. 2018. V. 6. № 15. P. 6183. https://doi.org/10.1039/c7ta10823k
  11. Zhu Z., Liang F., Zhou Z. et al. // J. Mater. Chem. A. 2018. V. 6. № 4. P. 1513. https://doi.org/10.1039/C7TA07951F
  12. Zhang H., Huang Y., Ming H. et al. // J. Mater. Chem. A. 2020. V. 8. № 4. P. 1604. https://doi.org/10.1039/C9TA09984K
  13. Шандаков С.Д., Вершинина А.И., Ломакин М.В. и др. // Вестн. Кемеровского гос. ун-та. 2015. Т. 2. № 5. С. 127.
  14. Ге Ч., Фан Ж., Шен Л. и др. // Электрохимия. 2019. Т. 55. № 10. С. 1236. https://doi.org/10.1134/S0424857019080061
  15. Сморгонская Э.А., Звонарева Т.К., Иванова Е.И. и др. // Физика твердого тела. 2003. Т. 45. № 9. С. 1579.
  16. Li Y., Ni B., Li X. et al. // Nano-Micro Lett. 2019. V. 11. № 1. P. 60. https://doi.org/10.1007/s40820-019-0291-z
  17. Xu D., Chen C., Xie J. et al. // Adv. Energy Mater. 2016. V. 6. № 6. P. 1501929. https://doi.org/10.1002/aenm.201501929
  18. Li Z., Bommier C., Chong Z. Sen et al. // Adv. Energy Mater. 2017. V. 7. № 18. P. 1602894. https://doi.org/10.1002/aenm.201602894
  19. Zhu C., Mu X., van Aken P.A. et al. // Angew. Chem. 2014. V. 126. № 8. P. 2184. https://doi.org/10.1002/ange.201308354
  20. David L., Bhandavat R., Singh G. // ACS Nano. 2014. V. 8. № 2. P. 1759. https://doi.org/10.1021/nn406156b
  21. Zeng L., Zhang L., Liu X. et al. // Polymers (Basel). 2020. V. 12. № 9. P. 2134. https://doi.org/10.3390/polym12092134
  22. Xie X., Makaryan T., Zhao M. et al. // Adv. Energy Mater. 2016. V. 6. № 5. P. 1. https://doi.org/10.1002/aenm.201502161
  23. Литвинская В.В., Хохлова Г.П., Кряжев Ю.Г. // Химия твердого топлива. 2003. Т. 2. С. 51.
  24. Sisu C., Iordanescu R., Stanciu V. et al. // Dig. J. Nanomater. Biostructures. 2016. V. 11. № 2. P. 435.
  25. Saenko N.S., Ziatdinov A.M. // Mater. Today Proc. 2018. V. 5. № 12. P. 26052. https://doi.org/10.1016/j.matpr.2018.08.028
  26. Thommes M., Kohn R., Fruba M. // J. Phys. Chem. B. 2000. V. 104. № 33. P. 7932. https://doi.org/10.1021/jp994133m
  27. Jagiello J., Thommes M. // Carbon. 2004. V. 42. № 7. P. 1227. https://doi.org/10.1016/j.carbon.2004.01.022
  28. Thommes M., Kaneko K., Neimark A.V. et al. // Pure Appl. Chem. 2015. V. 87. № 9–10. P. 1051. https://doi.org/10.1515/pac-2014-1117
  29. Fujimoto H., Shiraishi M. // Carbon. 2001. V. 39. P. 1753. https://doi.org/10.1016/S0008-6223(00)00308-0
  30. Fujimoto H. // Carbon. 2003. V. 41. P. 1585. https://doi.org/10.1016/S0008-6223(03)00116
  31. Boruah R.K., Saikia B.K., Baruah B.P. et al. // J. Appl. Crystallogr. 2008. V. 41. № 1. P. 27. https://doi.org/10.1107/S0021889807049655
  32. Biennier L., Georges R., Chandrasekaran V. et al. // Carbon. 2009. V. 47. № 14. P. 3295. https://doi.org/10.1016/j.carbon.2009.07.050
  33. Biscoe J., Warren B.E. // J. Appl. Phys. 1942. V. 13. № 6. P. 364. https://doi.org/10.1063/1.1714879
  34. Oberlin A., Bonnamy S., Oshida K. // Tanso. 2006. V. 224. P. 281.
  35. Ziatdinov A.M., Saenko N.S., Skrylnik P.G. // Russ. J. Inorg. Chem. 2020. V. 65. № 1. P. 133. https://doi.org/10.1134/S0036023620010210
  36. Dresselhaus M.S., Dresselhaus G. // Adv. Phys. 1981. V. 30. № 2. P. 139. https://doi.org/10.1080/00018738100101367
  37. Xu K., Pan Q., Zheng F. et al. // Front. Chem. 2019. V. 7. P. 733. https://doi.org/10.3389/fchem.2019.00733
  38. Bobyleva Z.V., Drozhzhin O.A., Dosaev K.A. et al. // Electrochim. Acta. 2020. V. 354. P. 136647. https://doi.org/10.1016/j.electacta.2020.136647
  39. Zhao J., Zhao L., Chihara K. et al. // J. Power Sources. 2013. V. 244. P. 752. https://doi.org/10.1016/j.jpowsour.2013.06.109
  40. Li Y., Zhang L., Wang X. et al. // Research. 2019. № 1. P. 1. https://doi.org/10.34133/2019/6930294
  41. Han J., Johnson I., Lu Z. et al. // Nano Lett. 2021. V. 21. № 15. P. 6504. https://doi.org/10.1021/acs.nanolett.1c01595
  42. Yu P., Zhang W., Yang Y. et al. // J. Colloid Interface Sci. 2021. V. 582. P. 852. https://doi.org/10.1016/j.jcis.2020.08.063

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (399KB)
4.

Download (175KB)
5.

Download (163KB)
6.

Download (530KB)

Copyright (c) 2023 В.В. Железнов, Н.С. Саенко, В.Ю. Майоров, А.Ю. Устинов, Т.А. Сокольницкая, В.Г. Курявый, Д.Х. Шлык, А.А. Соколов, Д.П. Опра