Эксперименты по молекулярной спектроскопии на новосибирском терагерцовом лазере на свободных электронах

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Уникальные параметры Новосибирского лазера на свободных электронах (НЛСЭ) позволяют проводить в Центре коллективного пользования на его основе уникальные эксперименты по спектроскопии молекул. В статье подробно описаны параметры излучения терагерцового НЛСЭ. Кратко представлены проделанные на этом лазере эксперименты по молекулярной спектроскопии с соответствующими ссылками, где эти работы описаны подробно. Рассмотрены потенциально возможные, пока нереализованные эксперименты на терагерцовом НЛСЭ в области молекулярной спектроскопии сверхвысокого разрешения.

Full Text

Restricted Access

About the authors

В. В. Кубарев

Институт ядерной физики им. Г. И. Будкера СО РАН

Author for correspondence.
Email: vitaly.kubarev@yandex.ru
Russian Federation, Новосибирск, 630090

Е. Н. Чесноков

Институт химической кинетики и горения им. В. В. Воеводского СО РАН

Email: vitaly.kubarev@yandex.ru
Russian Federation, Новосибирск, 630090

References

  1. Shevchenko O.A., Vinokurov N.A., Arbuzov V.S. et al. // AIP Conf. Proc. 2020. V. 2299. C. 020001. https://doi.org/10.1063/5.0031513
  2. Kulipanov G.N., Bagryanskaya E.G., Chesnokov E.N. et al. // IEEE Trans. on Terahertz Science & Technology. 2015. V. 5. C. 798. https://doi.org/10.1109/TTHZ.2015.2453121
  3. Кубарев В.В. Оптические системы, диагностика и эксперименты на терагерцевых и инфракрасных лазерах на свободных электронах. Дис. … докт. физ.-мат. наук. Новосибирск: ИЯФ СО РАН, 2016. 321 с. https://www.inp.nsk.su/images/diss/Kubarev_disser.pdf
  4. Kubarev V.V. // Nuclear Instruments & Methods in Physics Research A. 2021. V. 1007. C. 165426. https://doi.org/10.1016/j.nima.2021.165426
  5. Kubarev V.V., Getmanov Ya.V., Shevchenko O.A. // AIP Conference Proceedings. 2020. V. 2299. C. 020003. https://doi.org/10.1063/5.0030503
  6. Kubarev V.V., Kulipanov G.N., Kolobanov E.I. et al. // Nuclear Instruments & Methods in Physics Research A. 2009. V. 603. C. 25. https://doi.org/10.1016/j.nima.2008.12.122
  7. Kubarev V.V. // Optics Letters. 2023. V. 48. C. 4785. https://doi.org/10.1364/OL.501366
  8. Kubarev V.V., Getmanov Ya.V., Shevchenko O.A. et al. // In Proc. of 39th Free Electron Laser Conf. FEL2019. Hamburg, Germany. 26–30 August 2019. http://jacow.org/fel2019/papers/tud03.pdf
  9. Kubarev V.V., Sozinov G.I., Scheglov M.A. et al. // IEEE Trans. on Terahertz Science & Technology. 2020. V. 10. C. 634. http://jacow.org/fel2019/papers/tud03.pdf
  10. Kubarev V.V., Ovchar V.K., Palagin K.S. // In Proc. 34th International Conference on Infrared, Millimeter, and Terahertz Waves IRMMW-THz-2009. Busan, South Korea. 21–25 September 2009. https://doi.org/10.1109/ICIMW.2009.5325576
  11. Kubarev V.V., Kazakevich G., Jeong Y.U., Lee B. Ch. // Nuclear Instruments & Methods in Physics Research A. 2003. V. 507. C. 523. https://doi.org/10.1016/S0168-9002(03)00911-2
  12. Kubarev V.V., Chesnokov E.N., Koshlyakov P.V. // In Proc. of 37th International Conference on Infrared, Millimeter, and Terahertz Waves IRMMW-THz-2012. Wollongong, Australia. 23–28 September 2012. https://doi.org/10.1109/IRMMW-THz.2012.6380436
  13. Kubarev V.V. // In Proc. of 38th International Conference on Infrared, Millimeter, and Terahertz Waves IRMMW-THz-2012. Mainz, Germany. 01–06 September 2013. https://doi.org/10.1109/IRMMW-THz.2013.6665603
  14. Kubarev V.V., Chesnokov E.N., Koshlyakov P.V. // In Proc. 5th International Conference TERA-2023. Moscow, Russia. 27 Febrary – 02 Mach 2023. https://doi.org/10.59043/9785604953914_96
  15. Chesnokov E.N., Kubarev V.V., Koshlyakov P.V., Kulipanov G.N. // Appl. Phys. Lett. 2012. V. 101. C. 131109. https://doi.org/10.1063/1.4754826
  16. Chesnokov E.N., Kubarev V.V., Koshlyakov P.V., Kulipanov G.N. // Laser Phys. Lett. 2013. V. 10. C. 055701. http://iopscience.iop.org/1612-202X/10/5/055701
  17. Chesnokov E.N., Kubarev V.V., Koshlyakov P.V. // Appl. Phys. Lett. 2014. V. 105. C. 261107. https://doi.org/10.1063/1.4905205
  18. Chesnokov E.N., Kubarev V.V., Koshlyakov P.V. et al. // Chem. Phys. Lett. 2015. V. 636. C. 203. https://doi.org/10.1016/j.cplett.2015.07.043
  19. Chesnokov E.N., Kubarev V.V., Koshlyakov P.V., Fedorov V.V. // IEEE Transactions on Terahertz Science and Technology. 2017. V. 7. C. 144. https://doi.org/10.1109/TTHZ.2017.2658441
  20. Chesnokov E.N., Krasnoperov L.N., Kubarev V.V., Koshlyakov P.V. // Combustion, Explosion, and Shock Waves. 2019. V. 55. C. 18. https://doi.org/10.1134/S0010508219010027
  21. Chesnokov E.N., Krasnoperov L.N., Kubarev V.V. // Laser Physics. 2020. V. 30. C. 015204. doi: 10.1088/1555-6611/ab535a
  22. Chesnokov E.N., Kubarev V.V., Krasnoperov L.N., Koshlyakov P.V. // Phys. Chem. Chem. Phys. 2020. V. 22. C. 20248. https://doi.org/10.1039/D0CP02773A
  23. Chesnokov E.N., Kubarev V.V., Koshlyakov P.V. // Laser Physics Letters. 2021. V. 18. C. 085205. https://iopscience.iop.org/article/10.1088/1612-202X/ac0d08/meta
  24. Chesnokov E.N., Kubarev V.V., Koshlyakov P.V., Gorbachev Ya.I. // Laser Phys. Lett. 2022. V. 19. C. 055201. https://iopscience.iop.org/article/10.1088/1612-202X/ac59bd
  25. Kubarev V.V., Chesnokov E.N., Koshlyakov P.V. // IEEE Transactions on Terahertz Science and Technology. 2023.
  26. Kubarev V.V., Getmanov Ya.V. // In Proc. 43rd International Conference on Infrared, Millimeter, and Terahertz Waves IRMMW-THz-2018. Nagoya, Japan. 09–14 September 2018. https://doi.org/10.1109/IRMMW-THz.2018.8510231
  27. Tammaro S., Pirali O., Roy P. et al. // Nature Commun. 2015. V. 6. C. 7733. https://doi.org/10.1038/ncomms8733

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Characteristic spectrum of radiation of a terahertz FEL near the center frequency of 2 THz in the resonant unstable mode (a), spectrum scan (a) near the center for the mode with low-frequency mode instability (a'); spectrum of a terahertz FEL in the stabilized stable mode (b), spectrum scan (b) near the center for the mode without low-frequency mode instability (b').

Download (492KB)
3. Fig. 2. Optical diagram of a heterodyne polarization spectrometer. The arrows in the circles show the direction of polarization of the electric field of the radiation.

Download (321KB)
4. Fig. 3. Spectral resolution of the heterodyne polarization spectrometer as a function of measurement time. The leftmost experimental point has a resolution of 1000 at a measurement time of 300 ps; it was obtained in an experiment on spectroscopy of individual FEL pulses in the modulation instability mode.

Download (67KB)
5. Fig. 4. Spectra of individual FEL pulses in the modulation instability mode (three solid lines) and the FEL spectrum recorded under the same conditions with a Fourier spectrometer (averaged over many pulses) with the same spectral resolution (dashed line, side frequencies are not detected).

Download (127KB)
6. Fig. 5. Free induction signal of a natural isotopic mixture of HBr molecules between two powerful short excitation pulses of the NFEL. The inset shows the spectral lines producing this signal. High-frequency modulation is isotopic splitting of the lines.

Download (297KB)
7. Fig. 6. Free induction signal of OH radical: without magnetic field (a), in a weak magnetic field for polarization perpendicular to the polarization of the exciting pulse of the NFEL, which is completely suppressed (b). High-frequency modulation of both signals is the Λ-splitting of OH lines, independent of the magnetic field. Low-frequency modulation, dependent on the magnetic field value, is the effect of beating of lines split by the Zeeman effect and non-Faraday rotation of the plane of polarization.

Download (155KB)

Copyright (c) 2024 Russian Academy of Sciences