Ionic liquids as promising functional materials for microextraction of steroid hormones

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Prospects for the use of imidazolium ionic liquids (IL) as extractants of sex steroid hormones (estrogens and androgens) in microextraction methods (dispersive liquid-liquid microextraction, DLLME, and magnetic solid-phase microextraction, mSPME) are identified. The key parameters of DLLME using C6MImNTf2 IL, affecting the extraction efficiency, are optimized using the design of experiment method. High degrees of recovery (88–99 %) are achieved. An approach of dynamic IL immobilization on the surface of magnetic nanoparticles (MNPs) for steroid extraction under mSPME conditions is proposed. Two types of MNP pre-coating are studied: hydrophilic based on silica and hydrophobic with oleic acid. The capabilities of C8MImBF4 IL as a MNP surface modifier for efficient steroid extraction are revealed. Optimum conditions provided high degrees of recovery (83–97 %), with the exception of estriol (60 %). The detection limits are 0.26–1.29 ng/mL. Limitations of the method related to partial removal of IL from the surface of NPs are revealed, which reduces the reproducibility of the results for estriol.

Full Text

Restricted Access

About the authors

A. T. Araslanova

Saint Petersburg State University

Email: Lena_pol@inbox.ru

Institute of Chemistry

Russian Federation, Universitetskii pr. 26, Petrodvorets, Saint Petersburg

M. Vasilenko

Saint Petersburg State University

Email: Lena_pol@inbox.ru

Institute of Chemistry

Russian Federation, Universitetskii pr. 26, Petrodvorets, Saint Petersburg

E. A. Bessonova

Saint Petersburg State University

Author for correspondence.
Email: Lena_pol@inbox.ru

Institute of Chemistry

Russian Federation, Universitetskii pr. 26, Petrodvorets, Saint Petersburg

L. A. Kartsova

Saint Petersburg State University

Email: Lena_pol@inbox.ru

Institute of Chemistry

Russian Federation, Universitetskii pr. 26, Petrodvorets, Saint Petersburg

References

  1. Anastas P., Eghbali N. Green chemistry: Principles and practice // Chem. Soc. Rev. 2010. V. 39. № 1. P. 301. https://doi.org/10.1039/B918763B
  2. Sheldon R. A. Fundamentals of green chemistry: efficiency in reaction design // Chem. Soc. Rev. 2012. V. 41. № 4. P. 1437. https://doi.org/10.1039/C1CS15219J
  3. Gałuszka A., Migaszewski Z., Namieśnik J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices // TrAC, Trends Anal. Chem. 2013. V. 50. P. 78. https://doi.org/10.1016/j.trac.2013.04.010
  4. Erythropel H.C., Zimmerman J.B., de Winter T.M., Petitjean L., Melnikov F., Lam C.H., Anastas P. T. The Green ChemisTREE: 20 years after taking root with the 12 principles // Green Chem. 2018. V. 20. № 9. P. 1929. https://doi.org/10.1039/C8GC00482J
  5. Zimmerman J.B., Anastas P.T., Erythropel H. C., Leitner W. Designing for a green chemistry future // Science. 2020. V. 367. № 6476. P. 397. https://doi.org/10.1126/science.aay3060
  6. Zhou G.S., Yuan Y.C., Yin Y., Tang Y.P., Xu R. J., Liu Y., Duan J.A. Hydrophilic interaction chromatography combined with ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction for determination of underivatized neurotransmitters in dementia patients’ urine samples // Anal. Chim. Acta. 2020. V. 1107. P. 74. https://doi.org/10.1016/j.aca.2020.02.027
  7. Trujillo-Rodríguez M.J., Rocío-Bautista P., Pino V., Afonso A.M. Ionic liquids in dispersive liquid-liquid microextraction // TrAC, Trends Anal. Chem. 2013. V. 51. P. 87. https://doi.org/10.1016/j.trac.2013.06.008
  8. Santos E., Albo J., Irabien A. Magnetic ionic liquids: synthesis, properties and applications // RSC Adv. 2014. V. 4. № 75. P. 40008. https://doi.org/10.1039/c4ra05156d
  9. Greer A.J., Jacquemin J., Hardacre C. Industrial applications of ionic liquids // Molecules. 2020. V. 25. № 21. P. 5207. https://doi.org/10.3390/molecules25215207
  10. Yavir K., Konieczna K., Marcinkowski Ł., Kloskowski A. Ionic liquids in the microextraction techniques: The influence of ILs structure and properties // TrAC, Trends Anal. Chem. 2020. V. 130. Article 115994. https://doi.org/10.1016/j.trac.2020.115994
  11. Herrera-Herrera A. V., Asensio-Ramos M., Hernández-Borges J., Rodríguez-Delgado M. Á. Dispersive liquid-liquid microextraction for determination of organic analytes // TrAC, Trends Anal. Chem. 2010. V. 29. № 7. P. 728. https://doi.org/10.1016/j.trac.2010.03.016
  12. Pacheco-Fernández I., Pino V. Ch. 17. Extraction with ionic liquids-organic compounds / Handbooks in Separation Science, Liquid-phase extraction / Ed. Poole C.F. Elsevier, 2020. P. 499. https://doi.org/10.1016/B978-0-12-816911-7.00017-7
  13. Pacheco-Fernández I., Pino V. Green solvents in analytical chemistry // Curr. Opin. Green Sustain. Chem. 2019. V. 18. P. 42. https://doi.org/10.1016/j.cogsc.2018.12.010
  14. Clark K. D., Nacham O., Purslow J. A., Pierson S. A., Anderson, J. L. Magnetic ionic liquids in analytical chemistry: A review // Anal. Chim. Acta. 2016. V. 934. P. 9. https://doi.org/10.1016/j.aca.2016.06.011
  15. Кольман Я., Рем К. Г. Наглядная биохимия. М: Мир, 2000. Т. 469. С. 469.
  16. Ojoghoro J.O., Scrimshaw M.D., Sumpter J.P. Steroid hormones in the aquatic environment // Sci. Total Environ. 2021. V. 792. Article 148306. https://doi.org/10.1016/j.scitotenv.2021.148306
  17. Schänzer W. Metabolism of anabolic androgenic steroids // Clin. Chem. 1996. V. 42. № 7. P. 1001. https://doi.org/10.1093/clinchem/42.7.1001
  18. Racz L.A., Goel R.K. Fate and removal of estrogens in municipal wastewater // J. Environ. Monit. 2010. V. 12. № 1. P. 58. https://doi.org/10.1039/B917298J
  19. Ting Y.F., Praveena S.M. Sources, mechanisms, and fate of steroid estrogens in wastewater treatment plants: A mini review // Environ. Monit. Assess. 2017. V. 189. № 4. P. 178. https://doi.org/10.1007/s10661-017-5890-x
  20. Briciu R.D., Kot-Wasik A., Namiesnik J. Analytical challenges and recent advances in the determination of estrogens in water environments // J. Chromatogr. Sci. 2009. V. 47. № 2. P. 127. https://dx.doi.org/10.1093/chromsci/47.2.127
  21. Massart R. Preparation of aqueous magnetic liquids in alkaline and acid media // IEEE Trans. Magn. 1981. V. 17. № 2. P. 1247. https://doi.org/10.1109/TMAG.1981.1061188
  22. Ma C., Li C., He N., Wang F., Ma N., Zhang L., Wang Z. Preparation and characterization of monodisperse core-shell Fe3O4@ SiO2 microspheres and its application for magnetic separation of nucleic acids from E. coli BL21 // J. Biomed. Nanotechnol. 2012. V. 8. № 6. P.1000. https://doi.org/10.1166/jbn.2012.1454
  23. Zhang L., He R., Gu H.C. Oleic acid coating on the monodisperse magnetite nanoparticles // Appl. Surf Sci. 2006. V. 253. № 5. P. 2611. http://dx.doi.org/10.1016/j.apsusc.2006.05.023
  24. Fard S. M. B., Ahmadi S. H., Hajimahmodi M., Fazaeli R., Amini M. Preparation of magnetic iron oxide nanoparticles modified with imidazolium-based ionic liquids as a sorbent for the extraction of eight phthalate acid esters in water samples followed by UPLC-MS/MS analysis: An experimental design methodology // Anal. Methods. 2020. V. 12. № 1. P. 73.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Structural formulas of steroid hormones.

Download (154KB)
3. Fig. 1. Chromatogram of a mixture of steroid hormone standards (estrogens and androgens) by RP HPLC with diode array detection. Conditions: liquid chromatograph LC-40 (Shimadzu), column: Kinetex™ 5 μm Biphenyl 100 Å, 150 × 2.1 mm, 5 μm, eluent: phase A – 0.1% aqueous formic acid solution, phase B – acetonitrile, 0.1% HCOOH, gradient elution mode. Mobile phase flow rate: 0.3 ml/min, thermostat temperature: 30°C.

Download (90KB)
4. Fig. 2. The influence of the nature of the dispersing solvent and ionic liquid on the values of the degrees of extraction of steroid hormones (estrone, estradiol, estriol, testosterone and progesterone) from aqueous solutions.

Download (203KB)
5. Fig. 3. Pareto plot for factors influencing the extraction of (a) testosterone and (b) estriol (factors: A – pH value of the sample solution, B – volume of acetonitrile, C – mass of ionic liquid).

Download (92KB)
6. Fig. 4. Dependence of the peak area (a) of testosterone and (b) estradiol (after extraction) on the content of acetonitrile, the mass of the ionic liquid and the pH value of the solution.

Download (252KB)
7. Fig. 5. Effect of (a) NaCl salt concentration (0–10%, w/v) and (b) ultrasonic treatment time on the extraction efficiency of steroids.

Download (123KB)
8. Fig. 6. Scheme of synthesis of core-shell nanoparticles.

Download (130KB)
9. Fig. 7. Electron micrographs of nanoparticles (a) Fe3O4@OA and (b) Fe3O4@SiO2 obtained by the SEM method.

Download (161KB)
10. Fig. 8. Magnetization curves of Fe3O4@OA nanoparticles.

Download (61KB)
11. Fig. 9. IR spectra of Fe3O4, Fe3O4@SiO2, Fe3O4@OA nanoparticles and pure oleic acid.

Download (151KB)
12. Fig. 10. Results of optimization of parameters affecting the extraction of analytes by mSPME: Pareto plot for (a) estradiol and (b) progesterone for factors (factor designations: A – mixing time, B – ionic liquid mass, C – nanoparticle suspension volume) and dependence of peak area (c) of estradiol and (d) testosterone on the nanoparticle suspension volume and ionic liquid mass.

Download (229KB)
13. Fig. 11. Selection of sample volume for steroid extraction by mSPME.

Download (79KB)

Copyright (c) 2025 Russian Academy of Sciences