Determination of quercetin in pharmaceuticals by digital colorimetry using assemblable microfluidic systems based on paper modified with gold and silver nanoparticles
- Authors: Furletov A.A.1, Yakimenko A.V.1, Apyari V.V.1, Dmitrienko C.G.1, Torocheshnikova I.I.1
-
Affiliations:
- Moscow State University named after M.V. Lomonosov, Department of Chemistry
- Issue: Vol 80, No 7 (2025)
- Pages: 641-655
- Section: ORIGINAL ARTICLES
- Submitted: 17.07.2025
- Accepted: 17.07.2025
- URL: https://rjraap.com/0044-4502/article/view/687818
- DOI: https://doi.org/10.31857/S0044450225070018
- EDN: https://elibrary.ru/bhhvio
- ID: 687818
Cite item
Abstract
One of the actual fields of application of paper-based microfluidic systems (µPADs) is the determination of biologically active substances in various objects, including pharmaceuticals. Often such determination is carried out as a variant of screening analysis to identify samples that should be investigated in more detail by highly informative but relatively expensive methods. In this work, an original method for the colorometric determination of quercetin using microfluidic analytical systems based on paper modified with gold and silver nanoparticles of different morphologies is proposed. It is based on the reduction of silver(I) ions to metallic silver under the action of quercetin, which leads to a contrast color change of the BMFS detection zones. The possibility of using a monitor calibrator and a smartphone camera to record the analytical signal was demonstrated. Optimal conditions of the analysis have been selected. It is shown that the type of nanoparticles affects the sensitivity coefficient of quercetin detection, which is promising for the creation of multisensor systems for discrimination of samples of complex composition. The limits of quercetin detection under the selected conditions are 70-120 ng depending on the nature of the analytical reagent and the method of analytical signal registration. The range of detectable contents is 2-10 µg. Sufficient sample volume for analysis does not exceed 25 µl. The selectivity of the proposed method for the determination of quercetin in relation to a series of common inorganic ions and organic substances was evaluated. The applicability of the developed approach for the determination of quercetin in three pharmaceutical preparations is shown.
Full Text

About the authors
A. A. Furletov
Moscow State University named after M.V. Lomonosov, Department of Chemistry
Author for correspondence.
Email: aleksei_furletov@mail.ru
Russian Federation, Moscow
A. V. Yakimenko
Moscow State University named after M.V. Lomonosov, Department of Chemistry
Email: aleksei_furletov@mail.ru
Russian Federation, Moscow
V. V. Apyari
Moscow State University named after M.V. Lomonosov, Department of Chemistry
Email: aleksei_furletov@mail.ru
Russian Federation, Moscow
C. G. Dmitrienko
Moscow State University named after M.V. Lomonosov, Department of Chemistry
Email: aleksei_furletov@mail.ru
Russian Federation, Moscow
I. I. Torocheshnikova
Moscow State University named after M.V. Lomonosov, Department of Chemistry
Email: aleksei_furletov@mail.ru
Russian Federation, Moscow
References
- Silva-Neto H.A., Arantes I.V.S., Ferreira A.L., do Nascimento G.H.M., Meloni G.N., de Araujo W.R., Paixão T.R.L.C., Coltro W.K.T. Recent advances on paper-based microfluidic devices for bioanalysis // Trends Anal. Chem. 2023. V. 158. Article 116893. https://doi.org/10.1016/j.trac.2022.116893
- Morbioli G.G., Mazzu-Nascimento T., Stockton A.M., Carrilho E. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) – A review // Anal. Chim. Acta. 2017. V. 970. P. 1. https://doi.org/10.1016/j.aca.2017.03.037
- Chen T., Sun C., Abbas S.C., Alam N., Qiang S., Tian X., Fu C., Zhang H., Xia Y., Liu L., Ni Y., Jiang X. Multi-dimensional microfluidic paper-based analytical devices (μPADs) for noninvasive testing: A review of structural design and applications // Anal. Chim. Acta. 2024. V. 1321. Article 342877. https://doi.org/10.1016/j.aca.2024.342877
- Rypar T., Bezdekova J., Pavelicova K., Vodova M., Adam V., Vaculovicova M., Macka M. Low-tech vs. high-tech approaches in μPADs as a result of contrasting needs and capabilities of developed and developing countries focusing on diagnostics and point-of-care testing // Talanta. 2024. V. 266. Article 124911. https://doi.org/10.1016/j.talanta.2023.124911
- Mahadeva S.K., Walus K., Stoeber B. Paper as a platform for sensing applications and other devices: A review // ACS Appl. Mater. Interfaces. 2015. V. 7. P. 8345. https://doi.org/10.1021/acsami.5b00373
- Mao K., Min X., Zhang H., Zhang K., Cao H., Guo Y., Yang Z. Paper-based microfluidics for rapid diagnostics and drug delivery // J. Contr. Release. 2020. V. 322. P. 187. https://doi.org/10.1016/j.jconrel.2020.03.010
- Pan Y., Mao K., Hui Q., Wang B., Cooper J., Yang Z. Paper-based devices for rapid diagnosis and wastewater surveillance // Trends Anal. Chem. 2022. V. 157. Article 116760. https://doi.org/10.1016/j.trac.2022.116760
- Asano H., Shiraishi Y. Development of paper-based microfluidic analytical device for iron assay using photomask printed with 3D printer for fabrication of hydrophilic and hydrophobic zones on paper by photolithography // Anal. Chim. Acta. 2015. V. 883. P. 55. https://doi.org/10.1016/j.aca.2015.04.014
- Yao X., Jia T., Xie C. Facial fabrication of paper-based flexible electronics with flash foam stamp lithography // Microsyst. Technol. 2017. V. 23. P. 4419. https://doi.org/10.1007/s00542-016-3207-6
- Malekghasemi S., Kahveci E., Duman M. Rapid and alternative fabrication method for microfluidic paper based analytical devices // Talanta. 2016. V. 159. P. 401. https://doi.org/10.1016/j.talanta.2016.06.040
- Henares T.G., Yamada K., Takaki S., Suzuki K., Citterio D. “Drop-slip” bulk sample flow on fully inkjet-printed microfluidic paper-based analytical device // Sens. Actuators B: Chem. 2017. V. 244. P. 1129. https://doi.org/10.1016/j.snb.2017.01.088
- Motalebizadeh A., Asiaei S. Micro-fabrication by wax spraying for rapid smartphone-based microfluidic devises (μPADs) using technical drawing pens and in-house formulated aqueous inks // Anal. Chim. Acta. 2020. V. 603. Article 113777. https://doi.org/10.1016/j.ab.2020.113777
- Chiang C.-K., Kurniawan A., Kao C.-Y., Wang M.-J. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays // Talanta. 2019. V. 194. P. 837. https://doi.org/10.1016/j.talanta.2018.10.104
- Ramesh H., Prabhu A., Nandagopal G., Dheivasigamani T., Kumar N. One-dollar microfluidic paper-based analytical devices: Do-It-Yourself approaches // Microchem. J. 2021. V. 165. Article 106126. https://doi.org/10.1016/j.microc.2021.106126
- de Oliveira R.A., Camargo F., Pesquero N.C., Faria R.C. A simple method to produce 2D and 3D microfluidic paper-based analytical devices for clinical analysis // Anal. Chim. Acta. 2017. V. 957. P. 40. https://doi.org/10.1016/j.aca.2017.01.002
- Abdulsattar J.O., Hadi H., Richardson S., Iles A., Pamme N. Detection of doxycycline hyclate and oxymetazoline hydrochloride in pharmaceutical preparations via spectrophotometry and microfluidic paper-based analytical device (μPADs) // Anal. Chim. Acta. 2020. V. 1136. P. 196. https://doi.org/10.1016/j.aca.2020.09.045
- Gutorova S.V., Apyari V.V., Kalinin V.I., Furletov A.A., Tolmacheva V.V., Gorbunova M.V., Dmitrienko S.G. Composable paper-based analytical devices for determination of flavonoids // Sens. Actuators B: Chem. 2021. V. 331. Article 129398. https://doi.org/10.1016/j.snb.2020.129398
- Prakobkij A., Sukapanon S., Chunta S., Jarujamrus P. Mickey mouse-shaped laminated paper-based analytical device in simultaneous total cholesterol and glucose determination in whole blood // Anal. Chim. Acta. 2023. V. 1263. Article 341303. https://doi.org/10.1016/j.aca.2023.341303
- Zhang J., Li W., Zhang B., Zhang G., Liu C. Screening of angiotensin converting enzyme inhibitors from natural products via origami microfluidic paper-based analytical devices with colorimetric detection // J. Pharm. Biomed. Anal. 2024. V. 238. Article 115833. https://doi.org/10.1016/j.jpba.2023.115833
- Heidary O., Akhond M., Hemmateenejad B. A microfluidic paper-based analytical device for iodometric titration of ascorbic acid and dopamine // Microchem. J. 2022. V. 182. Article 107886. https://doi.org/10.1016/j.microc.2022.107886
- Sammani M.S., Clavijo S., Cerdà V. Recent, advanced sample pretreatments and analytical methods for flavonoids determination in different samples // Trends Anal. Chem. 2021. V. 138. Article 116220. https://doi.org/10.1016/j.trac.2021.116220
- Blasa M., Candiracci M., Accorsi A., Piacentini M.P., Piatti E. Honey flavonoids as protection agents against oxidative damage to human red blood cells // Food Chem. 2007. V. 104. P. 1635. https://doi.org/10.1016/j.foodchem.2007.03.014
- Kapoor B., Gulati M., Gupta R., Singh S.K., Gupta M., Nabi A., Chawla P.A. A review on plant flavonoids as potential anticancer agents // Curr. Org. Chem. 2021. V. 25. P. 737. https://doi.org/10.2174/1385272824999201126214150
- Maleki S.J., Crespo J.F., Cabanillas B. Anti-inflammatory effects of flavonoids // Food Chem. 2019. V. 29. Article 125124. https://doi.org/10.1016/j.foodchem.2019.125124
- Khachatoorian R., Arumugaswami V., Raychaudhuri S., Yeh G.K., Maloney E.M., Wang J., Dasgupta A., French S.W. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle // Virology. 2012. V. 433. P. 346. https://doi.org/10.1016/j.virol.2012.08.029
- Zhao L.-L., Jayeoye T.J., Ashaolu T.J., Olatunji O.J. Pinostrobin, a dietary bioflavonoid exerts antioxidant, anti-inflammatory, and anti-apoptotic protective effects against methotrexate-induced ovarian toxicity in rats // Tissue Cell. 2023. V. 85. Article 102254. https://doi.org/10.1016/j.tice.2023.102254
- Huang Y., Tang G., Zhang T., Fillet M., Crommen J., Jiang Z. Supercritical fluid chromatography in traditional Chinese medicine analysis // J. Pharm. Biomed. Anal. 2018. V. 147. P. 65. https://doi.org/10.1016/j.jpba.2017.08.021
- de Villiers A., Venter P., Pasch H. Recent advances and trends in the liquid-chromatography – Mass spectrometry analysis of flavonoids // J. Chromatogr. A. 2016. V. 1430. P. 16. https://doi.org/10.1016/j.chroma.2015.11.077
- Olech M., Pietrzak W., Nowak R. Characterization of free and bound phenolic acids and flavonoid aglycones in Rosa rugosa thunb. leaves and achenes using LC-ESI-MS/MS-MRM methods // Molecules. 2020. V. 25. Article 1804. https://doi.org/10.3390/molecules25081804
- Formisano C., Rigano D., Lopatriello A., Sirignano C., Ramaschi G., Arnoldi L., Riva A., Sardone N., Taglialatela-Scafati O. Detailed phytochemical characterization of bergamot polyphenolic fraction (BPF) by UPLC-DAD-MS and LC-NMR // J. Agric. Food Chem. 2019. V. 67. P. 3159. https://doi.org/10.1021/acs.jafc.8b06591
- Gotti R. Capillary electrophoresis of phytochemical substances in herbal drugs and medicinal plants // J. Pharm. Biomed. Anal. 2011. V. 55. P. 775. https://doi.org/10.1016/j.jpba.2010.11.041
- Gan Z., Chen Q., Fu Y., Chen G. Determination of bioactive constituents in Flos Sophorae Immaturus and Cortex Fraxini by capillary electrophoresis in combination with far infrared-assisted solvent extraction // Food Chem. 2012. V. 130. P. 1122. https://doi.org/10.1016/j.foodchem.2011.08.018
- Soylak M., Ozdemir B., Yilmaz E. An environmentally friendly and novel amine-based liquid phase microextraction of quercetin in food samples prior to its determination by UV-Vis spectrophotometry // Spectrochim. Acta A. 2020. V. 243. Article 118806. https://doi.org/10.1016/j.saa.2020.118806
- Furletov A.A., Apyari V.V., Garshev A.V., Dmitrienko S.G., Zolotov Yu.A. Fast and sensitive determination of bioflavonoids using a new analytical system based on label-free silver triangular nanoplates // Sensors. 2022. V. 22. P. 843. https://doi.org/10.3390/s22030843
- Dmitrienko S.G., Apyari V.V., Kudrinskaya V.A., Stepanova A.V. Preconcentration of flavonoids on polyurethane foam and their direct determination by diffuse reflectance spectroscopy // Talanta. 2012. V. 102. P. 132. https://doi.org/10.1016/j.talanta.2012.08.017
- Pejić N., Kuntić V., Vujić Z., Mićić S. Direct spectrophotometric determination of quercetin in the presence of ascorbic acid // Il. Farm. 2004. V. 59. P. 21. https://doi.org/10.1016/j.farmac.2003.07.013
- Xu J., Zhang H., Chen G. Carbon nanotube/polystyrene composite electrode for microchip electrophoretic determination of rutin and quercetin in Flos Sophorae Immaturus // Talanta. 2007. V. 73. P. 932. https://doi.org/10.1016/j.talanta.2007.05.019
- Wang M.Y., Zhang D.E., Tong Z.W., Xu X.Y., Yang X.J. Voltammetric behavior and the determination of quercetin at a flowerlike Co3O4 nanoparticles modified glassy carbon electrode // J. Appl. Electrochem. 2011. V. 41. P. 189. https://doi.org/10.1007/s10800-010-0223-6
- Транова Ю.С., Мыльников П.Ю., Щулькин А.В., Черных И.В., Правкин С.К., Якушева Е.Н. Метод количественного определения кверцетина с помощью ВЭЖХ-МС/МС // Наука молодых. 2022. Т. 10. С. 251. https://doi.org/10.23888/hmj2022103251-258
- Дмитриенко С.Г., Степанова А.В., Кудринская В.А., Апяри В.В. Особенности разделения флавоноидов методом обращено-фазовой высокоэффективной хроматографии на колонке Luna 5u C18 (2) // Вестн. Моск. ун-та. Сер. 2. Химия. 2012. Т. 53. С. 369. (Dmitrienko S.G., Stepanova A.V., Kudrinskaya V.A., Apyari V.V. Specifics of separation of flavonoids by reverse phase high performance liquid chromatography on the Luna 5u C18(2) column // Moscow Univ. Chem. Bull. 2012. V. 67. P. 254. https://doi.org/10.3103/s0027131412060041)
- Usoltseva L.O., Samarina T.O., Abramchuk S.S., Prokhorova A.F., Beklemishev M.K. Selective Rayleigh light scattering determination of trace quercetin with silver nanoparticles // J. Lumin. 2016. V. 179. P. 438. https://doi.org/10.1016/j.jlumin.2016.07.020
- Hu Y., Feng T., Li G. A novel solid fluorescence method for the fast determination of quercetin in biological samples based on the quercetin–Al(III) complex imprinted polymer // Spectrochim. Acta A. 2014. V. 118. P. 921. https://doi.org/10.1016/j.saa.2013.09.076
- Volikakis G.J., Efstathiou C.E. Determination of rutin and other flavonoids by flow-injection/adsorptive stripping voltammetry using nujol-graphite and diphenylether-graphite paste electrodes // Talanta. 2000. V. 51. P. 775. https://doi.org/10.1016/s0039-9140(99)00352-5
- Nasrollahi S., Ghoreishi S.M., Khoobi A. Nanoporous gold film: Surfactant-assisted synthesis, anodic oxidation and sensing application in electrochemical determination of quercetin // J. Electroanal. Chem. 2020. V. 864. Article 114097. https://doi.org/10.1016/j.jelechem.2020.114097
- Hussain M.A., Mahmoud K.M. Determination of quercetin in some natural products using reversed FIA-CL method // Der Pharma Chem. 2011. V. 3. P. 321. https://doi.org/10.1016/0378-4347(94)00549-k
- Ященко Н.Н., Житарь С.В., Зиновьева Е.Г. Тест-определение общего содержания фенольных соединений в чае // Бутлеровские сообщения. 2022. Т. 71. C. 99. https://doi.org/10.37952/roi-jbc-01/22-71-8-99
- Zaporozhets O.A., Krushynska O.A., Lipkovska N.A., Barvinchenko V.N. A new test method for the evaluation of total antioxidant activity of herbal products // J. Agric. Food Chem. 2004. V. 52. P. 21. https://doi.org/10.1021/jf0343480
- Моросанова Е.И., Беляков М.В., Золотов Ю.А. Кремний-титановые ксерогели: получение и использование для определения аскорбиновой кислоты и полифенолов // Журн. аналит. химии. 2012. Т. 67. С. 17. https://doi.org/10.31857/s0044450221010084 (Morosanova E.I., Belyakov M.V., Zolotov Yu.A. Silicon-titanium xerogels: Synthesis and application to the determination of ascorbic acid and polyphenoles // J. Anal. Chem. 2012. V. 67. P. 14. https://doi.org/10.1134/s1061934812010108)
- Berasarte I., Albizu G., Santos W.F., de Lima L.F., Ostra M., Vidal M., de Araujo W.R. Chemometrics and digital image colorimetry approaches applied to paper-based analytical devices: A review // Anal. Chim. Acta. 2024. V. 1339. Article 343577. https://doi.org/10.1016/j.aca.2024.343577
- Апяри В.В., Дмитриенко С.Г., Горбунова М.В., Фурлетов А.А., Золотов Ю.А. Наночастицы золота и серебра в методах оптической молекулярной абсорбционной спектроскопии // Журн. аналит. химии. 2019. Т. 74. С. 26. https://doi.org/10.1134/s0044450219010055 (Apyari V.V., Dmitrienko S.G., Gorbunova M.V., Furletov A.A., Zolotov Yu.A. Gold and silver nanoparticles in optical molecular absorption spectroscopy // J. Anal. Chem. 2019. V. 74. P. 21. https://doi.org/10.1134/s1061934819010052)
- Furletov A.A., Apyari V.V., Zaytsev V.D., Sarkisyan A.O., Dmitrienko S.G. Silver triangular nanoplates: Synthesis and application as an analytical reagent in optical molecular spectroscopy. A review // Trends Anal. Chem. 2023. V. 166. Article 117202. https://doi.org/10.1016/j.trac.2023.117202
- Millstone J.E., Hurst S.J., Métraux G.S., Cutler J.I., Mirkin C.A. Colloidal gold and silver triangular nanoprisms // Small. 2009. V. 5. P. 646. https://doi.org/10.1002/smll.200801480
- Крутяков Ю.А., Кудринский А.А., Оленин А.Ю., Лисичкин Г.В. Синтез и свойства наночастиц серебра: достижения и перспективы // Успехи химии. 2008. Т. 77. С. 242. https://doi.org/10.1070/rc2008v077n03abeh003751 (Krutyakov Yu.A., Kudrinskiy A.A., Olenin A.Yu., Lisichkin G.V. Synthesis and properties of silver nanoparticles: Advances and prospects // Russ. Chem. Rev. 2008. V. 77. P. 233. https://doi.org/10.1070/rc2008v077n03abeh003751)
- Chen H., Cai S., Luo J., Liu X., Ou L., Zhang Q., Liedberg B., Wang Y. Colorimetric biosensing assays based on gold nanoparticles functionalized/combined with non-antibody recognition elements // Trends Anal. Chem. 2024. V. 173. Article 117654. https://doi.org/10.1016/j.trac.2024.117654
- Alhajj M., Ghoshal S.K. Sustainability, safety, biocompatibility and benefits of laser ablated gold, silver and copper nanoparticles: A comprehensive review // J. Mol. Liq. 2024. V. 414. Article 126130. https://doi.org/10.1016/j.molliq.2024.126130
Supplementary files
