Adsorption Isotherms of Enantiomer on Hippuric Acid Crystals Obtained under Viedma Ripening Conditions Using a Temperature Gradient

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The work is devoted to the study of the capacity for chiral recognition during the adsorption process of hippuric acid crystals obtained by the temperature gradient method under Viedma ripening conditions. This method is distinguished by the fact that the primary violation of chiral equilibrium between the nuclei formed during crystallization is not caused by the mechanical action of the stirrer but by crystallization at low temperatures. Limonenes and α-pinenes were used as test enantiomers. Adsorption isotherms were obtained using inverse gas chromatography, and their analysis made it possible to establish the chiral recognition ability of the surface. It was shown that both the enantioselectivity and adsorption capability of the synthesized hippuric acid crystals were significantly higher than those of crystals obtained under classical Viedma ripening conditions. High surface heterogeneity is probably the reason for this phenomenon.

Sobre autores

G. Akhatova

Ufa University of Science and Technology

Email: guscov@mail.ru
450076, Ufa, Russia

V. Gus’kov

Ufa University of Science and Technology

Autor responsável pela correspondência
Email: guscov@mail.ru
450076, Ufa, Russia

Bibliografia

  1. Bonner W.A. // Origins Life Evol. Biospheres. 1995. V. 25. P. 175–190.
  2. Blackmond D.G. // Cold Spring Harb Perspect Biol. 2019. V. 11. P. a032540.
  3. Davankov V.A. // Symmetry. 2018. V. 10. P. 749–761.
  4. Davankov V.A. // Symmetry. 2021. V. 13. P. 1918–1934.
  5. Gus’kov Yu.V., Shayakhmetova R.K., Allayarova D.A. et al. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 11968–11979.
  6. Ribo J.M., Hochberg D. // Symmetry. 2019. V. 11. P. 814–829.
  7. Bailey J., Chrysostomou A., Hough J. et al. // Science. 1998. V. 281. P. 672–674.
  8. Myrgorodska I., Javelle T., Meinert C., Meierhenrich U.J. // Israel J. Chemistry. 2016. V. 56. № 11–12. P. 1016–1026.
  9. Ribo J.M., El-Hachemi Z., Crusats J. // Rendiconti Lincei. Scienze Fisiche e Naturali. 2013. V. 24. P. 197–211.
  10. Sang Y., Liu M. // Symmetry. 2019. V. 11. P. 950–968.
  11. Shen Z., Wang T., Liu M. // Angewandte Chemie International Edition. 2014. V. 53. P. 13424–13428.
  12. Zhang Y., Chen P., Liu M. // Chemical European J. 2008. V. 14. P. 1793–1803.
  13. Davankov V. // Isr. J. Chem. 2016. V. 56. № 11–12. P. 1036–1041.
  14. Даванков В.А. // Сорбц. хромат. проц. . 2022. Т. 22. № 4. С. 552–555.
  15. Percec V., Leowanawat P. // Isr. J. Chem. 2011. V. 51. № 1107–1117. P. 1107.
  16. Frank F.C. // Biochimica et Biophysica Acta. 1953. V. 11. P. 459–463.
  17. Soai K., Shibata T., Morioka H., Choji K. // Nature. 1995. V. 378. P. 767–768.
  18. Soai K. // Proc. Jpn. Acad., Ser. B. 2019. V. 95. № 3. P. 89–110.
  19. Kondepudi D.K., Kaufman R.J., Singh N. // Science. 1990. V. 250. P. 975–976.
  20. Kondepudi D.K., Digits J., Bullock K. // Chirality. 1995. V. 7. P. 62–68.
  21. Viedma C. // Physical Review Letters. 2005. V. 94. P. 065504.
  22. Sogutoglu L.-C., Steendam R.R.E., Meekes H. et al. // Chemical Society Reviews. 2015. V. 44. P. 6723–6732.
  23. Viedma C., Cintas P. // Chem. Commun. 2011. V. 47. P. 12786–12788.
  24. Zinovyev I., Ermolaeva E., Sharafutdinova Y. et al. // Symmetry. 2023. V. 15. P. 498–512.
  25. Gus’kov V.Y., Gallyamova G.A., Sairanova N.I. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 26785–26794.
  26. Gus’kov V.Y., Shayakhmetova R.K., Allayarova D.A. et al. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 11968–11979.
  27. Gus’kov V.Yu., Allayarova D.A., Garipova G.Z., Pavlova I.N. // New J. Chem. 2020. V. 44. P. 17769–17779.
  28. McLaughlin D.T., Nguyen T.P.T., Mengnjo L. et al. // Crystal Growth and Design. 2014. V. 14. P. 1067–1076.
  29. Kawasaki T., Suzuki K., Hatase K. et al. // Chemical Communications. 2006. DOI: . № 17. P. 1869–1871.https://doi.org/10.1039/b602442d
  30. Газо-адсорбционная хроматография / Киселев А.В., Яшин Я.И. М.: Химия, 1967. 256 с.
  31. Gus’kov V.Y., Gainullina Y.Y., Musina R.I. et al. // Separation Science and Technology. 2021. V. 56, pp. 527–540.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (82KB)
3.

Baixar (48KB)
4.

Baixar (40KB)
5.

Baixar (40KB)

Declaração de direitos autorais © Г.И. Ахатова, В.Ю. Гуськов, 2023