Low-Temperature N2 and He Separation on a HKUST-1 Membrane

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Technologies of membrane-based gas separation can be integrated into existing industrial processes for low-temperature helium recovery from natural gas at the stages of crude helium separation from the N2/He mixture and its purification. The effectiveness of these processes is most affected by the properties of the materials from which the membrane is made. Due to their unique properties, metal-organic framework are promising materials for use in gas separation. In the present work, both the Monte Carlo and equilibrium molecular dynamics methods were employed to examine the temperature dependence of membrane selectivity and nitrogen permeability for separation of an equimolar mixture of N2 and He by a HKUST-1-based membrane at a pressure drop of 0.1, 0.3, and 1 MPa. It was shown that the selection of optimal temperature conditions made it possible to obtain a significant increase in membrane selectivity and permeability for nitrogen compared to corresponding parameters at room temperature.

Sobre autores

I. Grenev

Novosibirsk State University; Boreskov Institute of Catalysis

Email: greneviv@catalysis.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

V. Gavrilov

Boreskov Institute of Catalysis

Autor responsável pela correspondência
Email: greneviv@catalysis.ru
630090, Novosibirsk, Russia

Bibliografia

  1. Rufford T.E. et al. // Adsorpt. Sci. Technol. 2014. V. 32. № 1. P. 49–72.
  2. Scholes C.A., Ghosh U. // J. Membr. Sci. 2016. V. 520. P. 221–230.
  3. Dai Z. et al. // Sep. Purif. Technol. 2021. V. 274. P. 119044.
  4. Scholes C.A. // Ind. Eng. Chem. Res. 2018. V. 57. № 10. P. 3792–3799.
  5. Alders M., Winterhalder D., Wessling M. // Sep. Purif. Technol. 2017. V. 189. P. 433–440.
  6. Moghadam P.Z. et al. // Chem. Mater. 2017. V. 29. № 7. P. 2618–2625.
  7. Chung Y.G. et al. // J. Chem. Eng. Data. 2019. V. 64. № 12. P. 5985–5998.
  8. Altintas C. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 20. P. 17257–17268.
  9. Altintas C. et al. // J. Mater. Chem. A. 2019. V. 7. № 16. P. 9593–9608.
  10. Solanki V.A., Borah B. // J. Phys. Chem. C. 2020. V. 124. № 8. P. 4582–4594.
  11. Zarabadi-Poor P., Marek R. // J. Phys. Chem. C. 2019. V. 123. № 6. P. 3469–3475.
  12. Daglar H., Keskin S. // Adv. Theory Simul. 2019. V. 2. № 11. P. 1900109.
  13. Budhathoki S. et al. // Energy Environ. Sci. 2019. V. 12. № 4. P. 1255–1264.
  14. Grenev I.V., Gavrilov V.Yu. // Molecules. 2022. V. 28. № 1. P. 20.
  15. Ye P. et al. // AIChE J. 2016. V. 62. № 8. P. 2833–2842.
  16. Yu L. et al. // J. Membr. Sci. 2022. V. 644. P. 120113.
  17. Chui S.S. // Science. 1999. V. 283. № 5405. P. 1148–1150.
  18. Cao F. et al. // Ind. Eng. Chem. Res. 2012. V. 51. № 34. P. 11274–11278.
  19. Lu C. et al. // Materials. 2018. V. 11. № 7. P. 1207.
  20. Guo Y. et al. // Chemistry Select. 2016. V. 1. № 1. P. 108–113.
  21. Mayo S.L., Olafson B.D., Goddard W.A. // J. Phys. Chem. 1990. V. 94. № 26. P. 8897–8909.
  22. Rappe A.K. et al. // J. Am. Chem. Soc. 1992. V. 114. № 25. P. 10024–10035.
  23. Potoff J.J., Siepmann J.I. // AIChE J. 2001. V. 47. № 7. P. 1676–1682.
  24. Hirschfelder J.O., Curtiss C.F., Bird R.B. Molecular theory of gases and liquids. New York: Wiley, 1954. 1219 p.
  25. Nazarian D., Camp J.S., Sholl D.S. // Chem. Mater. 2016. V. 28. № 3. P. 785–793.
  26. Nazarian D. et al. // Chem. Mater. 2017. V. 29. № 6. P. 2521–2528.
  27. Dubbeldam D. et al. // Mol. Simul. 2016. V. 42. № 2. P. 81–101.
  28. Krishna R., van Baten J.M. // J. Membr. Sci. 2010. V. 360. № 1–2. P. 323–333.
  29. Sava Gallis D.F. et al. // Chem. Mater. 2015. V. 27. № 6. P. 2018–2025.
  30. Chowdhury P. et al. // Microporous Mesoporous Mater. 2009. V. 117. № 1–2. P. 406–413.
  31. Span R. et al. // J. Phys. Chem. Ref. Data. 2000. V. 29. № 6. P. 1361–1433.
  32. Vaezi M.J. et al. // Current Trends and Future Developments on (Bio-) Membranes. Elsevier, 2019. P. 185–203.
  33. Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications. 0 ed. / ed. Pabby A.K., Rizvi S.S.H., Requena A.M.S. CRC Press, 2008.
  34. Zito P.F. et al. // J. Membr. Sci. 2018. V. 564. P. 166–173.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (40KB)
3.

Baixar (386KB)

Declaração de direitos autorais © И.В. Гренев, В.Ю. Гаврилов, 2023