Поверхностное модифицирование малоуглеродистой стали 4-амино-4h-1,2,4-триазол-3,5-дитиолом для ингибирования коррозии в 0,5М растворе серной кислоты

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Органические ингибиторы коррозии на основе гетероциклических соединений обеспечивают значительное покрытие металлической поверхности и защищают металлическую поверхность от коррозии путем адсорбции. Адсорбция 4-амино-4H-1,2,4-триазол-3,5-дитиол (АТД) на поверхности малоуглеродистой стали в 1 Н растворе серной кислоты была исследована комплексом физико-химических методов, включающим: поляризационные измерения, спектроскопию электрохимического импеданса, метод краевых углов смачивания, оптическую микроскопию. В пользу существования защитной пленки АТД свидетельствует перераспределение компонент свободной энергии поверхности и ее гидрофобизация. Расчет энергии активации коррозионного процесса на основании поляризационных измерений показал изменение характера адсорбции с ростом температуры от смешанного к химическому. На основании данных спектроскопии электрохимического импеданса и краевых углов смачивания установлено, что монослойное заполнение происходит при концентрации 100 мг/л. АТД ингибирует преимущественно катодную парциальную электрохимическую реакцию, образуя адсорбционные слои на энергетически неоднородной поверхности в соответствии с моделью изотермы Редлиха-Петерсона.

Full Text

Restricted Access

About the authors

М. Д. Плотникова

Пермский государственный национальный исследовательский университет

Author for correspondence.
Email: plotnikova-md@mail.ru
Russian Federation, Букирева, 15, Пермь, 614000

М. Г. Щербань

Пермский государственный национальный исследовательский университет

Email: plotnikova-md@mail.ru
Russian Federation, Букирева, 15, Пермь, 614000

А. Б. Шеин

Пермский государственный национальный исследовательский университет

Email: plotnikova-md@mail.ru
Russian Federation, Букирева, 15, Пермь, 614000

К. Ю. Шумяцкая

Пермский государственный национальный исследовательский университет

Email: plotnikova-md@mail.ru
Russian Federation, Букирева, 15, Пермь, 614000

References

  1. Finšgar M., Jackson J. // Corr. Sci. 2014. Т. 86. С. 17–41.
  2. Hong L.V., Mahmud H.B. // J. Petrol. Explor. Prod. Technol. 2019. V. 9. P. 753.
  3. Глущенко В.Н., Силин М.А. // Нефтепромысловая химия. 2010. Т. 4. C. 703.
  4. Guo B., Liu X., Tan X. // Gulf. Prof. Publ. 2nd Ed. 2017. P. 367–387.
  5. Hong L.V., Mahmud H.B. / In IOP Conf. Series: Mater. Sci. Eng. 2017. V. 217.
  6. Shafiq M.U., Mahmud H.B. // J. Petrol. Explor. Prod. Technol. 2017. V. 7. P. 1205.
  7. Rögener F., Lednova Yu. A., Andrianova M.Yu., Lednov A.V. // Вестн. МГТУ им. Г. И. Носова. 2019. Т. 17. № 2. С. 38.
  8. Agrawal A., Sahu K.K. // J. Hazard. Mater. 2009. V. 171. P. 61.
  9. Obot I.B., Meroufel A., Onyeachu I.B. et al. // Mol. Liq. 2019. V. 296. 111760.
  10. Kamal M.S., Hussein I., Mahmoud M et al. // J. Petrol. Explor. Prod. Technol. 2018. V. 171. P. 127.
  11. Dohare P. et al. // Results in Phys. 2019. Т. 13. С. 102344.
  12. Haque J. et al. // J. of Indust. & Engin. Chem. 2017. Т. 49. С. 176–188.
  13. Yoo S. H. et al. // Indust. & Engin. Chem. Res. 2013. Т. 52. №. 32. С. 10880–10889.
  14. Abdallah M. et al. // J. of Molecular Liq. 2016. Т. 216. С. 590–597.
  15. Chauhan D. S. et al. // J. of Molecular Liq. 2019. Т. 289. С. 111113.
  16. Suhasaria A. et al. // J. of Molecular Liq. 2020. Т. 313. С. 113537.
  17. Qiang Y., Li H., Lan X. // J. of Materials Sci. & Tech. 2020. Т. 52. С. 63–71.
  18. Zhang R. et al. // Org. letters. 2017. Т. 19. № 20. С. 5629–5632.
  19. Lebrini M. et al. // Applied Surface Sci. 2007. Т. 253. №. 23. С. 9267–9276.
  20. Авдеев Я. Г., Кузнецов Ю. И. // Rus. J. of Phys. Chem. A. 2023. Т. 97. №. 4. С. 459–468.
  21. Авдеев Я. Г., Кузнецов Ю. И. // Успехи химии. 2012. Т. 81. №. 12. С. 1133–1145.
  22. Yousef T. A. et al. // J. of Molec. Struct. 2023. Т. 1275. С. 134603.
  23. Popova A. et al. // Corr. Sci. 2003. Т. 45. № 1. С. 33–58.
  24. Popova A. et al. // Corr. sci. 2004. Т. 46. № 6. С. 1333–1350.
  25. Popova A., Christov M., Zwetanova A. // Corr. Sci. 2007. Т. 49. №. 5. С. 2131–2143.
  26. Zhang X. et al. // ACS omega. 2022. Т. 7. № 36. С. 32208–32224.
  27. Abd-El-Nabey B. A. et al. // Indust. & Engin. Chem. Res. 2024.
  28. Zobeidi A. et al. // ACS omega. 2023. Т. 8. № 24. С. 21571–21584.
  29. Chen X., Wang P., Zhang D. // ACS applied materials & interfaces. 2019. Т. 11. № 41. С. 38276–38284.
  30. Huang Y. et al. // J. Langmuir. 2023. Т. 39. № 17. С. 6018–6028.
  31. Behera S. K. et al. // J. Langmuir. 2019. Т. 35. № 49. С. 16120–16129.
  32. Kozbial A. et al. // J. Langmuir. 2014. Т. 30. № 28. С. 8598–8606.
  33. Plotnikova M. D. et al. // Eurasian J. of Chem. 2023. Т. 28. № 4. 112.
  34. Brug J., van den Eeden A.L. G., Sluyters-Rehbach M., Sluyters J.H. // J. Electroanal. Chem. 1984. V. 176. P. 275–295.
  35. Faisal M., Saeed A., Shahzad D., Abbas N., Ali Larik F., Ali Channar P., Abdul Fattah T., Muhammad Khan D. & Aaliya Shehzadi S. // Corr. Reviews. 2018. V. 36. № 6. P. 507–545.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Synthesis of 4-amino-4H-1,2,4-triazole-3,5-dithiol

Download (1KB)
3. Fig. 2. The effect of ATD concentration on the magnitude of the protective effect in a 0.5M sulfuric acid solution

Download (10KB)
4. Fig. 3. State of the St3 surface upon contact with a 0.5M sulfuric acid solution in the presence of ATD in concentrations (mg/l): a – 0, b – 50, c – 100. Magnification 25

Download (43KB)
5. Fig. 4. Change in the contact angle and adhesion stress at different concentrations of ATD

Download (3KB)
6. Fig. 5. Tautomeric forms of ATD in acidic media

Download (1KB)
7. Fig. 6. Polarization curves of St3 in 0.5M H2SO4 solution at a temperature of 293 K and ATD concentration (mg/l): 1 – 0, 2 – 100

Download (10KB)
8. Fig. 7. Determination of the activation energy of the corrosion process of St3 in a 0.5M H2SO4 solution: 1 – without inhibitor, 2 – with the addition of 100 mg/l ATD

Download (1KB)
9. Fig. 8. Nyquist diagrams of St3 in 0.5 M sulfuric acid solution in the presence of ATD

Download (17KB)
10. Fig. 9. Equivalent electrical circuit for describing corrosion processes in acidic environments

Download (587B)
11. Fig. 10. Linearization of ATD adsorption data in the coordinates of the Redlich–Peterson model

Download (1KB)
12. Table 1. Hydrophobization of the surface of St3 samples under the action of ATD after gravimetric tests

Download (29KB)
13. Table 2 - Original sample

Download (14KB)
14. Table 2 - Sample after aging in uninhibited 0.5M H2SO4 solution

Download (14KB)
15. Table 2 - After exposure to 0.5M H2SO4 + 100 mg/l ATD solution

Download (17KB)

Copyright (c) 2024 Russian Academy of Sciences