Masses of 92 1s-hadrons in the chiral invariant phase space model
- Autores: Kosov M.V.1
-
Afiliações:
- Dukhov Automatics Research Institute (VNIIA)
- Edição: Volume 88, Nº 2 (2025)
- Páginas: 203-214
- Seção: ЯДРА. Теория
- ##submission.datePublished##: 04.06.2025
- URL: https://rjraap.com/0044-0027/article/view/683927
- DOI: https://doi.org/10.31857/S0044002725020046
- EDN: https://elibrary.ru/GKYUMP
- ID: 683927
Citar
Resumo
In the Chiral Invariant Phase Space Model, the constituent quarks of hadrons are surrounded by nonperturbative vacuum with the boiling temperature Tc. The color-electric binding energy ECE is proportional to the reduced energy of quarks εij. The spin-products of the color-magnetic splitting ECM are calculated according to the simplified rules of para-statistics. The masses of the 61 hadrons are fitted by 8 parameters including the Tc value and the 5 masses of quarks. The masses of 21 hadrons are predicted including hadrons with two and three heavy quarks.
Texto integral

Sobre autores
M. Kosov
Dukhov Automatics Research Institute (VNIIA)
Autor responsável pela correspondência
Email: Kosov@vniia.ru
Rússia, Moscow
Bibliografia
- M. V. Kossov, Eur. Phys. J. A 14, 265 (2002).
- K. G. Wilson, Nobel Lecture (1982).
- P. V. Degtyarenko, M. V. Kossov, and H.-P. Wellisch, Eur. Phys. J. A 8, 217 (2000).
- P. V. Degtyarenko, M. V. Kossov, and H.-P. Wellisch, Eur. Phys. J. A 9, 411 (2000).
- P. V. Degtyarenko, M. V. Kossov, and H.-P. Wellisch, Eur. Phys. J. A 9, 421 (2000).
- M. V. Kossov, IEEE Trans. Nucl. Sci. 52, 2832 (2005).
- M. V. Kossov, Eur. Phys. J. A 33, 7 (2007).
- M. V. Kossov, Eur. Phys. J. A 34, 283 (2007).
- M. V. Kossov, Eur. Phys. J. A 36, 289 (2008).
- P. Bogoliubov, Ann. Inst. Henri Poincare 8, 163 (1967).
- A. Chodos, R. Jaffe, K. Johnson, C. Thorn, and V. Weisskopf, Phys. Rev. D 9, 3471 (1974).
- D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).
- H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).
- G. Calucci, Acta Phys. Pol. B 36, 591 (2005).
- Particle Data Group (R. L. Workman et al.), Prog. Theor. Exp. Phys. 98, 083C01 (2022).
- R. Faustov and V. Galkin, Phys. Rev. D 92, 054005 (2015).
- H. Hamber and G. Parisi, Phys. Rev. Lett. 47, 1792 (1981).
- M. Gell-Mann, Phys. Lett. 8, 214 (1964).
- H. S. Green, Phys. Rev. 90, 270 (1953).
- O. W. Greenberg, Phys. Rev. Lett. 13, 598 (1964).
- A. Bracken and H. Green, J. Math. Phys. 14, 1784 (1973).
- T. Yang, Phys. Rev. D 10, 1251 (1974).
- A. Bernotas and V. Simonis, Lith. J. Phys. Tech. Sci. 52, 181 (2012).
- K. C. Bowler et al. (UKQCD Collab.), Phys. Rev. D 57, 6948 (1998).
- R. Roncaglia, D. Lichtenberg, and E. Predazzi, Phys. Rev. D 52, 1722 (1995).
- Z. Ghalenovi, A. Rajabi, and M. Hamzavi, Acta Phys. Pol. B 42, 1849 (2011).
- B. Patel, A. Rai, and P. Vinodkumar, J. Phys. G 35, 065001 (2008).
- H. Negash and S. Bhatnagar, arXiv: 1711.07036v1 [hep-ph].
- G.-S. Yang, H.-C. Kim, M. V. Polyakov, and M. Praszalowicz, Phys. Rev. D 94, 071502(R) (2016).
- Z. Shah and A. K. Rai, Eur. Phys. J. C 77, 129 (2017).
- S. Fleck and J.-M. Richard, Prog. Theor. Phys. 82, 760 (1989).
- T. DeGard, R. Jaffe, K. Johnson, and J. Kiskis, Phys. Rev. D 12, 2060 (1975).
- S. Dürr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann, S. D. Katz, S. Krieg, T. Kurth, L. Lellouch, T. Lippert, K. K. Szabo, and G. Vulvert, Science 322, 1224 (2008).
- R. Aaij et al. (LHCb Collab.), Phys. Rev. Lett. 119, 112001 (2017).
- J. Kneurand and A. Neven, Phys. Rev. D 85, 014005 (2012).
- C. McNeile, A. Bazavov, C. T. H. Davies, R. J. Dowdall, K. Hornbostel, G. P. Lepage, and H. D. Trottier, Phys. Rev. D 87, 034503 (2013).
- C. P. Herzog, Phys. Rev. Lett. 98, 091601 (2007).
- S. Afonun and A. Katanaeva, Phys. Rev. D 98, 114027 (2018).
- Y. Huang, Discovery of a Glueball-Like Particle X(2370) @ Besiii, concil Chamber CERN, May 21, 2024.
Arquivos suplementares
