Using cell-automation approach to create digital twins of hierarchical porous structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This paper proposes a multiscale model based on a cellular-automation approach for generating digital doubles of porous hierarchical structures of sodium alginate-based aerogels. The proposed model utilizes a cell-automation approach to generate structures at meso- and macro-levels and then combine them into a single digital multiscale structure that contains both meso- and macro-pores. Samples of sodium alginate-based aerogels have been experimentally investigated. Computational experiments have been carried out to generate digital structures corresponding to the experimental samples obtained. Comparison of the structural characteristics of digital and experimental samples was carried out, on the basis of which conclusions were drawn about the correct operation of the model. The obtained digital multiscale structures can be used in the future to predict the properties of hierarchical structures, which will partially replace in situ experiments with computational ones and, therefore, reduce costs in the development of new materials with specified properties.

Full Text

Restricted Access

About the authors

I. V. Lebedev

Russian University of Chemical Technology named after D.I. Mendeleev

Email: chemcom@muctr.ru
Russian Federation, Moscow

V. I. Gashenko

Russian University of Chemical Technology named after D.I. Mendeleev

Email: chemcom@muctr.ru
Russian Federation, Moscow

O. V. Fedotova

Russian University of Chemical Technology named after D.I. Mendeleev

Email: chemcom@muctr.ru
Russian Federation, Moscow

A. A. Abramov

Russian University of Chemical Technology named after D.I. Mendeleev

Email: chemcom@muctr.ru
Russian Federation, Moscow

P. Yu. Tsygankov

Russian University of Chemical Technology named after D.I. Mendeleev

Email: chemcom@muctr.ru
Russian Federation, Moscow

N. V. Men’shutina

Russian University of Chemical Technology named after D.I. Mendeleev

Author for correspondence.
Email: chemcom@muctr.ru
Russian Federation, Moscow

References

  1. Меньшутина Н.В., Ловская Д.Д., Лебедев А.Е., Лебедев Е.А. Процессы получения частиц аэрогелей на основе альгината натрия с использованием сверхкритической сушки в аппаратах различного объема // Сверхкритические Флюиды: Теория и Практика. 2017. Т. 12. № 2. C. 35.
  2. Smirnova I., Gurikov P. Aerogel production: Current status, research directions, and future opportunities: 30th Year Anniversary Issue of the Journal of Supercritical Fluids // The Journal of Supercritical Fluids. 2018. Т. 134. C. 228.
  3. Stergar J., Maver U. Review of aerogel-based materials in biomedical applications // Journal of Sol-Gel Science and Technology. 2016. V. 77. № 3. P. 738.
  4. García-González C.A., Alnaief M., Smirnova I. Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems // Carbohydrate Polymers. 2011. Т. 86. № 4. C. 1425.
  5. García-González C.A., Sosnik A., Kalmár J., De Marco I., Erkey C., Concheiro A., Alvarez-Lorenzo C. Aerogels in drug delivery: From design to application // Journal of Controlled Release. 2021. Т. 332. C. 40.
  6. Menshutina N., Majouga A., Uvarova A., Lovskaya D., Tsygankov P., Mochalova M., Abramova O., Ushakova V., Morozova A., Silantyev A. Chitosan Aerogel Particles as Nasal Drug Delivery Systems // Gels. 2022. V. 8. № 12. P. 796.
  7. Smirnova I., Suttiruengwong S., Arlt W. Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems: Aerogels 7. Proceedings of the 7th International Symposium on Aerogels // Journal of Non-Crystalline Solids. 2004. Т. 350. C. 54.
  8. Toward Predictive Multiscale Modeling of Vascular Tumor Growth | Archives of Computational Methods in Engineering. https://link.springer.com/article/10.1007/s11831-015-9156-x
  9. Menshutina N.V., Kolnoochenko A.V., Lebedev E.A. Cellular Automata in Chemistry and Chemical Engineering // Annual Review of Chemical and Biomolecular Engineering. 2020. Т. 11. № 1. C. 87.
  10. Лебедев И.В. и др. Цифровые двойники пористых структур аэрогелей с использованием клеточно-автоматного подхода и кривых Безье // Теоретические основы химической технологии. 2023. Т. 57. № 4. С. 412.
  11. Gerke K.M., Karsanina M.V., Mallants D. Universal stochastic multiscale image fusion: an example application for shale rock // Scientific reports. 2015. Т. 5. № 1. С. 15880.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Results of computed X-ray microtomography of sample 3: (a) shadow projection; (b) two-dimensional section.

Download (968KB)
3. Fig. 2. Schematic representation of the macroporous structure of aerogel.

Download (827KB)
4. Fig. 3. Measuring the cross-sectional diameter of the fiber.

Download (104KB)
5. Fig. 4. Fiber constructed using a Bezier curve.

Download (75KB)
6. Fig. 5. Digital fiber structure obtained using a Bezier curve-based model.

Download (520KB)
7. Fig. 6. The result of the “Geoids” model for two-dimensional (a) and three-dimensional (b) structures.

Download (1MB)
8. Fig. 7. Self-similarity of the hierarchical fibrous structure of sodium alginate-based aerogels.

Download (277KB)
9. Fig. 8. Completion of the meso-level structure to the dimensions of the macrostructure.

Download (1MB)
10. Fig. 9. Scheme of operation of the overlap model.

Download (290KB)
11. Fig. 10. Digital three-dimensional structures of aerogels based on sodium alginate, corresponding to samples: (a) – sample 1; (b) – sample 2.

Download (1MB)
12. Fig. 11. Digital three-dimensional structures of aerogels based on sodium alginate, corresponding to samples: (a) – sample 3; (b) – sample 4.

Download (816KB)
13. Fig. 12. Calculated and experimental curves of pore size distribution for sample 1.

Download (117KB)
14. Fig. 13. Calculated and experimental curves of pore size distribution for sample 2.

Download (116KB)
15. Fig. 14. Calculated and experimental curves of pore size distribution for sample 3.

Download (106KB)
16. Fig. 15. Calculated and experimental curves of pore size distribution for sample 4.

Download (119KB)

Copyright (c) 2025 Russian Academy of Sciences