Evaluation of the capacity of Rate-Splitting Multiple Access communication systems

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The Rate-Splitting Multiple Access (RSMA) method for multi-antenna communication systems is described. The sequence of operations for RSMA signal formation and processing is presented. RSMA usage scenarios in communication systems are considered, and the efficiency of this method is substantiated. Capacity estimates of the RSMA method are obtained in comparison with other multiple access methods. Numerical modeling of the average capacity per user is conducted using the QuaDRiGa tool. It is shown that RSMA achieves higher capacity compared to other multiple access methods used in multi-antenna communication systems.

Full Text

Restricted Access

About the authors

D. А. Pokamestov

Tomsk State University of Control Systems and Radioelectronics

Author for correspondence.
Email: dmaltomsk@mail.ru
Russian Federation, prosp. Lenina, 40, Tomsk, 634050

А. V. Filatov

Tomsk State University of Control Systems and Radioelectronics

Email: dmaltomsk@mail.ru
Russian Federation, prosp. Lenina, 40, Tomsk, 634050

Ya. V. Kryukov

Tomsk State University of Control Systems and Radioelectronics

Email: dmaltomsk@mail.ru
Russian Federation, prosp. Lenina, 40, Tomsk, 634050

А. S. Shinkevich

Tomsk State University of Control Systems and Radioelectronics

Email: dmaltomsk@mail.ru
Russian Federation, prosp. Lenina, 40, Tomsk, 634050

G. N. Shalin

Tomsk State University of Control Systems and Radioelectronics

Email: dmaltomsk@mail.ru
Russian Federation, prosp. Lenina, 40, Tomsk, 634050

Е. V. Rogozhnikov

Tomsk State University of Control Systems and Radioelectronics

Email: dmaltomsk@mail.ru
Russian Federation, prosp. Lenina, 40, Tomsk, 634050

References

  1. Chowdhury M.Z., Shahjalal Md, Ahmed Sh., Jang Y.M. // IEEE Open J. Commun. Soc. 2020. V. 1. P. 957.
  2. Покаместов Д.А., Крюков Я.В., Абенов Р.Р. и др. // РЭ. 2024. Т. 1. № 1. С. 33.
  3. Saito Y., Kishiyama Y., Benjebbour A. et al. // Proc. 2013 IEEE77th Vehicular Technology Conf. (VTC Spring). Dresden. 2–5. Jun. N.Y.: IEEE, 2013. Paper No. 6692652.
  4. Nikopour H., Baligh H. // Proc. 2013 IEEE24th Annual Int. Symp. on Personal, Indoor and Mobile Radio Commun. (PIMRC). London. 8–11 Sept. N.Y.: IEEE, 2013. P. 332.
  5. Chen S., Ren B., Gao Q. // IEEE Trans. 2016. V. VT-66. № 4. P. 3185.
  6. Cover T. // IEEE Trans. 1972. V. IF-18. № 1. P. 2.
  7. Kryukov Y.V., Pokamestov D.A., Rogozhnikov E.V. // Int. J. Commun. Systems. 2024. V. 37. № 2. P. 5642.
  8. Pokamestov D.A., Kryukov Ya.V., Rogozhnikov E.V. et al. // Symmetry. 2022. V. 14. № 10. P. 2103.
  9. Anwar A., Seet B.C., Hasan M.A., Li X.J. // Electronics. 2019. V. 8, № 11, P. 1355.
  10. Liu Y., Zhang S., Mu X., Ding Z. et al. // IEEE J. Selected Areas in Commun. 2022. V. 40. № 4. P. 1037.
  11. Zeng M., Yada A., Dobre O.A., Tsiropoulos G.I., Poor H. V. // IEEE Wireless Commun. Lett. 2017. V. 6. № 4. P. 534.
  12. Clerckx B., Mao Y., Schober R. et al. // IEEE Open J. Commun. Soc. 2021. V. 2. P. 1310.
  13. Kimy B., Lim S., Kim H. et al. // Proc. MILCOM 2013–2013 IEEE Military Commun. Conf. San Diego.8–11 Nov. N.Y.: IEEE, 2013. P. 1278.
  14. Mao Y., Clerckx B., Li V.O.K. // EURASIP J. Wireless Commun. and Networking. 2018. V. 2018. Article No. 133.
  15. Han T., Kobayashi K. // IEEE Trans. 1981. V. IT-27. № 1. P. 49.
  16. Mao Y., Dizdar O., Clerckx B. et al. // IEEE Commun. Surveys & Tutorials. 2022. V. 24. № 4. P. 2073.
  17. Dizdar O., Mao Y., Han W., Clerckx B. // Proc. 2020 IEEE92nd Vehicular Technology Conf. (VTC2020-Fall). Victoria. 18 Nov.-16 Dec. N.Y.: IEEE, 2020. Paper No. 9348672.
  18. Clerckx B., Mao Y., Jorswieck E.A. et al. // IEEE J. Selected Areas in Commun. 2023. V. 41. № 5. P. 1265.
  19. Schroeder A., Roeper M., Wuebben D. et al. // Proc. 26th Int. ITG Workshop on Smart Antennas and 13th Conf. on Systems, Commun. and Coding). Braunschweig. 27 Feb. N.Y.: IEEE, 2023. P. 1.
  20. Chopra G. // Proc. 2023 Int. Conf. on Emerging Smart Computing and Informatics (ESCI). Pune/ 0–03 Mar. N.Y.: IEEE, 2023. Paper No. 10100245
  21. Jaeckel S., Raschkowski L., Börner K., Thiele L. // IEEE Trans. 2014. V. AP-62. № 6. P. 3242.
  22. Kumar J., Gupta A., Tanwar S., Khan M.K. // Physical Commun.2024. V. 67. Article No. 102488.
  23. Spencer Q.H., Swindlehurst A.L., Haardt M. // IEEE Trans. 2004. V. SP-52. № 2. P. 461.
  24. Lee B., Shin W., Poor H.V. // Proc. 2021 Int. Conf. on Information and Commun. Technology Convergence (ICTC). Jeju Island. 20–22 Oct. N.Y.: IEEE, 2021. P. 218.
  25. Jiang H., Mukherjee M., Zhou J., Lloret J. // IEEE Network. 2020. V. 35. № 1. P. 296.
  26. Zhang J.H., Tang P., Yu L. et al. // Frontiers of Information Technology & Electronic Engineering. 2020. V. 21. № 1. P. 39.
  27. G. Study on Channel Model for Frequencies from 0.5 to 100 GHz. 3GPP Technical Report. 38.901 V. 17.1.0. 2024. Sophia Antipolis Cedex: ETSI, 2024. 99 p.
  28. Clerckx B., Mao Y., Schober R., Poor H.V. // IEEE Wireless Commun. Lett. 2019. V. 9. № 3. P. 349.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural diagram of the RSMA communication system with one transmitter and K receivers.

Download (169KB)
3. Fig. 2. Simplified diagram of the RSMA-based communication system with two subscribers.

Download (48KB)
4. Fig. 3. Dependences of the average RMD values of subscribers: a – on |hc|2; b – on |hd|2; c – on P for the methods: OMA (1), RSMA (2), SDMA (3), NOMA (4).

Download (157KB)
5. Fig. 4. Dependences of the average RMD value on the SNR for one subscriber of the communication system with RSMA (1) and SDMA (2).

Download (65KB)

Copyright (c) 2025 Russian Academy of Sciences