Internal gravity waves dynamics in a stratified viscous medium with background shear flows under critical regimes generation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper considers the problem of propagation of linear internal gravity waves in a layer of viscous stratified medium of finite depth with horizontal background shear currents under critical wave generation conditions. In a flat formulation, new model physical formulations of problems in which critical conditions may arise are discussed, in particular, wave generation by periodic oscillations of the bottom. For arbitrary distributions of shear currents and buoyancy frequency satisfying the Miles–Howard conditions and natural regularity conditions, a model equation describing the main features of solutions near the critical level was proposed. For real parameters of stratified media, using the asymptotics of the model equation, estimates of the spatial scales on which it is necessary to take into account the viscosity of the medium were obtained.

Full Text

Restricted Access

About the authors

V. V. Bulatov

Ishlinsky Institute for Problems in Mechanics RAS

Author for correspondence.
Email: internalwave@mail.ru
Russian Federation, Moscow

References

  1. Fabrikant A.L., Stepanyants Yu.A. Propagation of Waves in Shear Flows. World Sci. Pub., 1998. 304 p.
  2. Miropol'skii Yu.Z., Shishkina O.V. Dynamics of Internal Gravity Waves in the Ocean. Boston: Kluwer Acad. Pub., 2001. 406 p.
  3. Ozsoy E. Geophysical Fluid Dynamics II. Stratified Rotating Fluid Dynamics of the Atmosphere–Ocean. Cham (Switzerland AG): Springer Nature, 2021. 323 p.
  4. Bulatov V.V., Vladimirov Yu.V. Waves in Stratified Medium. Moscow: Nauka, 2015. 735 p. (in Russian)
  5. Morozov E.G. Oceanic Internal Tides. Observations, Analysis and Modeling. Berlin: Springer, 2018. 317 p.
  6. Morozov E.G., Tarakanov R.Yu., Frey D.I. Bottom Gravity Currents and Overflow in Deep Channels of the Atlantic Ocean. Switzerland AG: Springer Nature, 2021. 483 p.
  7. Gordey A.S., Frey D.I., Drozd I.D., Krechik V.A., Smirnova D.A., Gladyshev S.V., Morozov E.G. Spatial variability of water mass transports in the Bransfield Strait based on direct current measurements // Deep Sea Res. Pt. I: Oceanogr. Res. Papers, 2024, vol. 207, pp. 1–15.
  8. Talipova T., Pelinovsky E., Didenkulova E. Internal tsunami waves in a stratified ocean induced by explosive volcano eruption: a parametric source // Phys. Fluids, 2024, vol. 36, pp. 042110.
  9. Bouruet-Aubertot P.I., Thorpe S.A. Numerical experiments of internal gravity waves an accelerating shear flow // Dyn. Atm. Oceans, 1999, vol. 29, pp. 41–63.
  10. Fraternale F., Domenicale L, Staffilan G.,Tordella D. Internal waves in sheared flows: lower bound of the vorticity growth and propagation discontinuities in the parameter space // Phys. Rev., 2018, vol. 97(6), pp. 063102.
  11. Slepyshev A.A., Vorotnikov D.I. Generation of vertical fine structure by internal waves in a shear flows // Open J. Fluid Mech., 2019, vol. 9, pp. 140–157.
  12. Howland C.J., Taylor J.R., Caulfield C.P. Shear-induces breaking of internal gravity waves // J. Fluid Mech., 2021, vol. 921, A24.
  13. Gervais A.D., Swaters G.E., Sutherland B.R. Transmission and reflection of three-dimensional Boussinesq internal gravity wave packets in nonuniform retrograde shear flow // Phys. Rev. Fluids, 2022, vol. 7, pp. 114802.
  14. Shugan I., Chen Y.-Y. Kinematics of the ship’s wake in the presence of a shear flow // J. Mar. Sci. Eng., 2021, vol. 9, pp. 7.
  15. Bretherton F.P. The propagation of groups of internal gravity waves in a shear flow // Quart. J. Royal. Metereol. Soc., 1966, vol. 92, pp. 466–480.
  16. Young W.R., Phines P., Garret C.J.R. Shear flows dispersion, internal waves and horizontal mixing // J. Phys. Oceanogr., 1982, vol. 2(6), pp. 515–527.
  17. Brown S.V., Stewartson K. On the nonlinear reflection of a gravity waves at a critical level. Pt. 2 // J. Fluid Mech., 1982, vol. 115, pp. 217–230.
  18. Voelker G.S., Akylas T.R., Achatz U. An application of WKBJ theory for triad interactions of internal gravity waves in varying background flows // Q.J.R. Meteorol. Soc., 2021, vol. 147, pp. 1112.
  19. Hirota M., Morrison P.J. Stability boundaries and sufficient stability conditions for stably stratified, monotonic shear flows // Phys. Lett. A, 2016, vol. 380(21), pp. 1856–1860.
  20. Carpenter J.R., Balmforth N.J., Lawrence G.A. Identifying unstable modes in stratified shear layers // Phys. Fluids, 2010, vol. 22, pp. 054104.
  21. Miles J.W. On the stability of heterogeneous shear flow // J. Fluid Mech., 1961, vol. 10(4), pp. 495–509.
  22. Gavrileva A.A., Gubarev Yu.G., Lebedev M. P. The Miles theorem and the first boundary value problem for the Taylor–Goldstein equation // J. Appl.& Industr. Math., 2019, vol. 13(3), pp. 460–471.
  23. Churilov S. On the stability analysis of sharply stratified shear flows // Ocean Dyn., 2018, vol. 68, pp. 867–884.
  24. Bulatov V.V. Wave dynamics of stratified media with variable shear flows // Fluid Dyn., 2023, vol. 58, Suppl. 2, pp. S219–S229.
  25. Bulatov V.V. Features of modeling the wave dynamics of stratified media taking into account viscosity and compressibility // Fluid Dyn., 2023, vol. 58, Suppl. 2, pp. S253–S262.
  26. Bulatov V.V. Analytic properties of the Green’s function of internal gravitational waves in a stratified medium with shear flows // Theor.&Math. Phys., 2022, vol. 211(2), pp. 611–624.
  27. Bulatov V.V. Analytic properties of solutions to the equation of internal gravity waves with flows for critical modes of wave generation // Proc. of the Steklov Inst. of Math., 2023, vol. 322, pp. 65–76.
  28. Whittaker E.T., Watson G.N. A Course of Modern Analysis. Cambridge: Univ. Press, 1962. 608 p.
  29. Abramowitz M., Stegun I.A.(eds.) Handbook of Mathematical Functions. N.Y.: Dover Pub., 1992. 1046 p.
  30. Lavrentjev M.A., Shabat B.V. Methods of the Theory of Complex Variable Functions. Moscow: Fizmatlit, 1987. 688 p. (in Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences