Modernized Liquid Helium-Free Closed-Cycle Cryostat for Mössbauer Research

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

One of the problems in the use of closed-cycle cryostats for applied and basic scientific research is the transmission of mechanical vibrations to the sample. This is particularly relevant for Mössbauer spectroscopy and optical research methods since vibrations lead to broadening of spectral lines. This paper presents various engineering approaches to reducing mechanical vibrations on a sample in closed-cycle cryostats, in particular for Mössbauer spectroscopy. The broadening of the spectral lines of the reference absorber, α-Fe foil, was analyzed and a comparison of the spectra of a FeBO3 single crystal of high structural quality before and after updating the cryostat was made. The obtained results can be used to develop new cryostats or improve existing ones.

Sobre autores

S. Starchikov

Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences

Email: zayakhanov.vladimir@gmail.com
119333, Moscow, Russia

K. Funtov

Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences

Email: zayakhanov.vladimir@gmail.com
119333, Moscow, Russia

V. Zayakhanov

Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences

Email: zayakhanov.vladimir@gmail.com
119333, Moscow, Russia

K. Frolov

Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences

Email: zayakhanov.vladimir@gmail.com
Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences

M. Klenov

ООО CryoPribor

Email: zayakhanov.vladimir@gmail.com
123060, Moscow, Russia

I. Bondarenko

ООО CryoPribor

Email: zayakhanov.vladimir@gmail.com
123060, Moscow, Russia

I. Lyubutin

Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences

Autor responsável pela correspondência
Email: zayakhanov.vladimir@gmail.com
119333, Moscow, Russia

Bibliografia

  1. Li X., Zhu K., Pang J., Tian M., Liu J., Rykov A.I., Zheng M., Wang X., Zhu X., Huang Y., Liu B., Wang J., Yang W., Zhang T. // Appl. Catal. B Environ. 2018. V. 224. P. 518. https://doi.org/10.1016/j.apcatb.2017.11.004
  2. Tombácz E., Turcu R., Socoliuc V., Vékás L. // Biochem. Biophys. Res. Commun. 2015. V. 468. № 3. P. 442. https://doi.org/10.1016/j.bbrc.2015.08.030
  3. Oshtrakh M.I. // Cell Biochem. Biophys. 2019. V. 77. № 1. P. 15. https://doi.org/10.1007/s12013-018-0843-8
  4. Chuev M.A., Cherepanov V.M., Deyev S.M., Mischenko I.N., Nikitin M.P., Polikarpov M.A., Panchenko V.Y. // AIP Conference Proceedings. 2010. V. 1311. P. 322. https://doi.org/10.1063/1.3530033
  5. Rusakov V.S., Pokatilov V.S., Sigov A.S., Matsnev M.E., Gubaidulina T.V. // JETP Lett. 2014. V. 100. № 7. P. 463. https://doi.org/10.1134/S0021364014190102
  6. Kuzmann E., Homonnay Z., Klencsár Z. Szalay R. // Molecules. 2021. V. 26. № 4. P. 1062. https://doi.org/10.3390/molecules26041062
  7. Maksimova A.A., Klencsár Z., Oshtrakh M.I., Petrova E.V., Grokhovsky V.I., Kuzmann E., Homonnay Z., Semion-kin V.A. // Hyperfine Interact. 2016. V. 237. № 1. P. 33. https://doi.org/10.1007/s10751-016-1218-4
  8. Sumanov V.D., Aksyonov D.A., Drozhzhin O.A., Presniakov I., Sobolev A.V., Glazkova I., Tsirlin A.A., Rupasov D., Senyshyn A., Kolesnik I.V., Stevenson K.J., Antipov E., Abakumov A.M. // Chem. Mater. 2019. V. 31. № 14. P. 5035. https://doi.org/10.1021/acs.chemmater.9b00627
  9. Shen G., Mao H.K. // Reports Prog. Phys. 2017. V. 80. № 1. P. 016101. https://doi.org/10.1088/1361-6633/80/1/016101
  10. Williams J.M. // Cryogenics (Guildf). 1975. V. 15. № 6. P. 307. https://doi.org/10.1016/0011-2275(75)90077-6
  11. Micke P., Stark J., King S.A., Leopold T., Pfeifer T., Schmöger L., Schwarz M., Spieß L.J., Schmidt P.O., Crespo López-Urrutia J.R. // Rev. Sci. Instrum. 2019. V. 90. № 6. P. 065104. https://doi.org/10.1063/1.5088593
  12. Ekin J. Experimental techniques for low-temperature measurements: cryostat design, material properties and superconductor critical-current testing. NY.: Oxford U. Press, 2006. ISBN 978-0-19-857054-7. https://doi.org/10.1063/1.2743130
  13. Gifford W.E. Advances in Cryogenic Engineering. Boston, MA: Springer US, 1966. P. 152–159.
  14. D’Addabbo A., Bucci C., Canonica L., Di Domizio S., Gorla P., Marini L., Nucciotti A., Nutini I., Rusconi C., Welliver B. // Cryogenics (Guildf). 2018. V. 93. P. 56. https://doi.org/10.1016/j.cryogenics.2018.05.001
  15. Ikushima Y., Li R., Tomaru T., Sato N., Suzuki T., Haruyama T., Shintomi T., Yamamoto A. // Cryogenics (Guildf). 2008. V. 48. № 9–10. P. 406. https://doi.org/10.1016/j.cryogenics.2008.04.001
  16. Boolchand P., Lemon G.H., Bresser W.J., Enzweiler R.N., Harris R. // Rev. Sci. Instrum. 1995. V. 66. № 4. P. 3051. https://doi.org/10.1063/1.1145528
  17. Olivieri E., Billard J., De Jesus M., Juillard A. Leder A. // Nucl. Instrum. and Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 2017. V. 858. P. 73. https://doi.org/10.1016/j.nima.2017.03.045
  18. Наумов П.Г., Любутин И.С., Фролов К.В., Деми-хов Е.И. // ПТЭ. 2010. № 5. С. 158.
  19. Криомагнитные системы tSTAT310x. URL: http://cryo.ru/index.php?option=com_content&task= view&id=72&lang=ru.
  20. Courts S.S. // IOP Conf. Ser. Mater. Sci. Eng. 2017. V. 278. № 1. P. 012076. https://doi.org/10.1088/1757-899X/278/1/012076
  21. Matsnev M.E., Rusakov V.S. // AIP Conference Proceedings. 2012. V. 1489. P. 178. https://doi.org/10.1063/1.4759488
  22. Yagupov S., Strugatsky M., Seleznyova K., Mogilenec Y., Snegirev N., Marchenkov N V., Kulikov A.G., Eliovich Y.A., Frolov K.V., Ogarkova Y.L., Lyubutin I.S. // Cryst. Growth Des. 2018. V. 18. № 12. P. 7435. https://doi.org/10.1021/acs.cgd.8b01128
  23. Lyubutin I.S., Snegirev N.I., Chuev M.A., Starchikov S.S., Smirnova E.S., Lyubutina M.V., Yagupov S.V., Strugatsky M.B., Alekseeva O.A. // J. Alloys Compd. 2022. V. 906. P. 164348. https://doi.org/10.1016/j.jallcom.2022.164348

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (395KB)
3.

Baixar (1MB)
4.

Baixar (823KB)
5.

Baixar (536KB)
6.

Baixar (1001KB)
7.

Baixar (107KB)
8.

Baixar (390KB)
9.

Baixar (334KB)
10.

Baixar (505KB)

Declaração de direitos autorais © С.С. Старчиков, К.О. Фунтов, В.А. Заяханов, К.В. Фролов, М.Г. Клёнов, И.Ю. Бондаренко, И.С. Любутин, 2023