Time Resolution and Light Yield of Scintillation Detector Samples for the Time-of-Flight Neutron Detector of the BM@N Experiment

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A new compact time-of-flight neutron detector is being planned for the identification and energy measurement of neutrons produced in nucleus-nucleus interactions at energies up to 4 AGeV at the BM@N experiment, located at the Nuclotron (Joint Institute for Nuclear Research, Dubna, Russia). This detector will be used to measure neutron yields and azimuthal flows, which should be sensitive to the equation of state of dense nuclear matter, as shown in various theoretical models It is proposed to use plastic scintillators produced at JINR and IFTP and silicon photomultipliers with a sensitive area of 6 × 6 mm2 for photon registration, one for each scintillation cell. To achieve the required neutron energy resolution (of the order of several percent) in the energy range up to 4 GeV, the time resolution of scintillation detectors should be 100−150 ps. The concept of a time-of-flight neutron detector is discussed. The results of measurements of the light yield and time resolution of several scintillation detector specimens of various sizes and two types of silicon photomultipliers are presented.

Sobre autores

F. Guber

Institute for Nuclear Research, Russian Academy of Sciences

Email: karpushkin@inr.ru
108840, Troitsk, Moscow, Russia

A. Ivashkin

Institute for Nuclear Research of Russian Academy of Sciences

Email: vsinev@inr.ru
Moscow, Russia

N. Karpushkin

Institute for Nuclear Research, Russian Academy of Sciences

Email: karpushkin@inr.ru
108840, Troitsk, Moscow, Russia

A. Makhnev

Institute for Nuclear Research, Russian Academy of Sciences

Email: karpushkin@inr.ru
108840, Troitsk, Moscow, Russia

S. Morozov

Institute for Nuclear Research, Russian Academy of Sciences

Email: karpushkin@inr.ru
108840, Troitsk, Moscow, Russia

D. Serebryakov

Institute for Nuclear Research, Russian Academy of Sciences

Autor responsável pela correspondência
Email: instr@pleiadesonline.com
108840, Moscow, Russia

Bibliografia

  1. Kapishin M. // JPS Conf. Proc. 2020. V. 32. P. 010093. https://doi.org/10.7566/JPSCP.32.010093
  2. Arsene I., Bravina L., Cassing W., Ivanov Yu., Larionov A., Randrup J., Russkikh V., Toneev V., Zeeb G., Zschiesche D. // Phys. Rev. C. 2007. V. 75. P. 034902. https://doi.org/10.1103/PhysRevC.75.034902
  3. FOPI Collaboration. Leifels Y. et al. // Phys. Rev. Lett. 1993. V. 71. P. 963. https://doi.org/10.1103/PhysRevLett.71.963
  4. FOPI Collaboration. Lambrecht D. et al. // Z. Phys. A. 1994. V. 350. P. 115. https://doi.org/10.1007/BF01290679
  5. Russotto P., Wu P., Zoric M., Chartier M., Leifels Y., Lemmon R., Li Q., Łukasik J., Pagano A., Pawłowski P., Trautmann W. // Phys. Let. B. 2011. V. 697. P. 471. https://doi.org/10.1016/j.physletb.2011.02.033
  6. LAND collaboration. Blaich T. et al. // Nucl. Instrum. and Methods A. 1992. V. 314. P. 136. https://doi.org/10.1016/0168-9002(92)90507-Z
  7. R3B collaboration. Boretzky K. et al. // Nucl. Instrum. and Methods A. 2021. V. 1014. P. 165701. https://doi.org/10.1016/j.nima.2021.165701
  8. Russotto P., Le Fèvre A., Łukasik J., Boretzky K., Cozma M.D., De Filippo E., Gašparić I., Leifels Y., Lihtar I., Pirrone S., Politi G., Trautmann W. // arXiv: 2105.09233 [nucl-ex]. https://doi.org/10.48550/arXiv.2105.09233
  9. CALICE collaboration. Chadeeva M. et al. // JINST. 2020. V. 15. Iss. 07. C07014. https://doi.org/10.1088/1748-0221/15/07/C07014
  10. URL https://iftp.ru/
  11. ALICE Collaboration. Karavicheva T. et al. // J. Phys.: Conf. Ser. 2017. V. 798. P. 012186. https://doi.org/10.1088/1742-6596/798/1/012186

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (331KB)
3.

Baixar (1013KB)
4.

Baixar (64KB)

Declaração de direitos autorais © Ф.Ф. Губер, А.П. Ивашкин, Н.М. Карпушкин, А.И. Махнев, С.В. Морозов, Д.В. Серебряков, 2023