Tin (IV) Oxide Coatings with Different Morphologies on the Surface of a Thinned Quartz Fiber for Sensor Application

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Thin-film coatings of tin oxide on the surface of a chemically thinned section of a single-mode quartz fiber have been obtained and experimentally characterized. The materials were synthesized on the fiber surface by metal-organic chemical vapor deposition (MOCVD). To change the surface morphology, we used different amounts of tetramethyltin (SnMe4) supplied by a carrier gas (dried air) to the deposition zone by varying the temperature of the bubbler with the reagent. During deposition, the transmission spectrum of the optical path was recorded in real time, and the temperature of the bubbler in the experiments varied from –20 to +20°С. After studying the surface on a scanning electron microscope, the deposited films were tested for chemical resistance to an aqueous solution of sulfuric acid and the sensitivity of the lossy mode resonance (LMR) to changes in the refractive index of the environment in the range from 1.35 to 1.41 was evaluated. Samples produced at higher reagent flow rates exhibited a greater resonance sensitivity of 3800 nm/refractive index unit (RIU) for the first-order TM component of the resonance, but such coatings dissolve noticeably in concentrated sulfuric acid solutions, in contrast to coatings obtained with low reagent consumption.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Sobre autores

D. Sudas

Peter the Great St. Petersburg Polytechnical University; Kotel’nikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences (Fryazino Branch)

Email: dmitriisudas@mail.ru
195251, St. Petersburg, Russia; 141190, Fryazino, Moscow oblast, Russia

P. Kuznetsov

Kotel’nikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences (Fryazino Branch)

Autor responsável pela correspondência
Email: dmitriisudas@mail.ru
141190, Fryazino, Moscow oblast, Russia

Bibliografia

  1. Kersey A.D. // Opt. Fiber Technol. 1996. V. 2. P. 291. https://doi.org/10.1006/ofte.1996.0036
  2. Franzão O., Santos J.L., Araújo F.M., Ferreira L.A. // Laser & Photon. Rev. 2008. V. 2. P. 449. https://doi.org/10.1002/lpor.200810034
  3. Roriz P., Franzão O., Lobo-Ribeiro A.B., Santos J.L., Simoes J.A. // J. Biomed. Opt. 2013. V. 18. № 5. Art. ID 050903. https://doi.org/10.1117/1.jbo.18.5.050903
  4. Del Villar I., Arregui F.J., Zamarreno C.R., Corres J.M., Bariain C., Goicoechea J., Elosua C., Hernaez M., Rivero P.J., Socorro A.B., Urrutia A., Sanchez P., Zubiate P., Lopez D., De Acha N. et al. // Sens. Actuators B. 2017. V. 240. P. 174. https://doi.org/10.1016/j.snb.2016.08.126
  5. Kerttula J., Filippov V., Chamorovskii Yu., Ustimchik V., Golant K., Okhotnikov O. G. // Proc. SPIE 8237. Fiber Lasers IX: Technology. Systems and Applications. 2012. Art. ID 82370W. https://doi.org/10.1117/12.908147
  6. Dianov E. // Light Sci Appl. 2012. V. 1. Art. ID e12. https://doi.org/10.1038/lsa.2012.12
  7. Dejneka M., Samson B. // MRS Bulletin. 1999. V. 24. P. 39. https://doi.org/10.1557/S0883769400053057
  8. Sanada K., Shamoto T., Inada K. // J. Non-Crystalline Solids. 1995. V. 189. P. 283. https://doi.org/10.1016/0022-3093(95)00233-2
  9. Ascorbe J., Corres J.M., Matias I.R., Arregui F.J. // Sens. Actuators B. 2016. V. 233. P. 7. https://doi.org/10.1016/j.snb.2016.04.045
  10. Zhu S., Pang F., Huang S., Zou F., Dong Y., Wang T. // Opt. Express. 2015. V. 23. P. 13880. https://doi.org/10.1364/OE.23.013880
  11. Arregui F.J., Del Villar I., Zamarreno C.R., Zubiate P., Matias I.R. // Sens. Actuators B. 2016. V. 232. P. 660. https://doi.org/10.1016/j.snb.2016.04.015
  12. Wang J., Luo Z., Zhou M., Ye C., Fu H., Cai Z., Cheng H., Xu H., Qi W. // IEEE Photonics J. 2012. V. 4. P. 1295. https://doi.org/10.1109/JPHOT.2012.2208736
  13. Lee J., Koo J., Jhon Y.M., Lee J.H. // Opt. Express. 2014. V. 22. P. 6165. https://doi.org/10.1364/OE.22.006165
  14. Lee H., Kwon W.S., Kim J.H., Kang D., Kim S. // Opt. Express. 2015. V. 23. P. 22116. https://doi.org/10.1364/OE.23.022116
  15. Henry W.M. // Proc. SPIE. Chemical, Biochemical, and Environmental Fiber Sensors VI. 1994. V. 2293. https://doi.org/10.1117/12.190957
  16. Wang Z., Zhu G., Wang Y., Li M., Singh R., Zhang B., Kumar S. // Appl. Opt. 2021. V. 60. P. 2077. https://doi.org/10.1364/ao.418875
  17. Tabassum S., Kumar R. // Adv. Mater. Technol. 2020. V. 5. Art. ID 1900792. https://doi.org/10.1002/admt.201900792
  18. Paliwal N., John J. // IEEE Sens. J. 2015. V. 15. P. 5361. https://doi.org/10.1109/JSEN.2015.2448123
  19. Wang X., Wang Q., Song Z., Qi K. // AIP Adv. 2019. V. 9. Art. ID 095005. https://doi.org/10.1063/1.5112090
  20. Urrutia A., Del Villar I., Zubiate P., Zamarreco C.R. // Laser Photon. Rev. 2019. Art. ID 1900094. https://doi.org/10.1002/lpor.201900094
  21. Ozcariz A., Ruiz-Zamarreco C., Arregui F.J. // Sensors. 2020. V. 20. P. 1972. https://doi.org/10.3390/s20071972
  22. Usha S.P., Mishra S.K., Gupta B.D. // Sens. Actuators B. 2015. V. 218. P. 196. https://doi.org/10.1016/j.snb.2015.04.108
  23. Sanchez P., Mendizabal D., Zamarreno C.R., Matias I.R., Arregui F.J. // Proc. SPIE 9634. 2015. Art. ID 96347M. https://doi.org/10.1117/12.2195177
  24. Matias I.R., Ikezawa S., Corres J. Fiber Optic Sensors: Status and Future Possibilities. Springer International Publishing, Switzerland. 2017. V. 21. P. 51. https://doi.org/10.1007/978-3-319-42625-9
  25. Li W., Zhang A., Cheng Q., Sun C., Li Y. // Optik. 2020. V. 213. Art. ID 164696. https://doi.org/10.1016/j.ijleo.2020.164696
  26. Savelyev E.A. // Eur. Phys. J. D. 2021. V. 75. Art. ID 285. https://doi.org/10.1140/epjd/s10053-021-00296-0
  27. Kuznetsov P.I., Sudas D.P., Savel’ev E.A. // Instrum. Exp. Tech. 2020. V. 63. P. 516. https://doi.org/10.1134/S0020441220040302
  28. Kuznetsov P.I., Sudas D.P., Yapaskurt V.O., Savelyev E.A. // Opt. Mater. Exp. 2021. V. 11. P. 2650. https://doi.org/10.1364/OME.433169
  29. Kuznetsov P.I., Sudas D.P., Savelyev E.A. // Sens. Actuators A. 2021. Art. ID 112576. https://doi.org/10.1016/j.sna.2021.112576

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (354KB)
3.

Baixar (1MB)
4.

Baixar (204KB)
5.

Baixar (125KB)
6.

Baixar (311KB)

Declaração de direitos autorais © Д.П. Судас, П.И. Кузнецов, 2023