3D-Printed Notch Filters for Microwave Diagnostic Systems of Controlled Thermonuclear Fusion Plants

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility of using 3D-printing technology with subsequent metallization in the manufacture of band-pass waveguide notch filters designed to ensure the operation of sensitive receiving equipment in experiments on collective Thomson scattering on plasma electron density fluctuations, which use high-power (up to several hundred kilowatts) probing radiation, is discussed. A two-resonator prototype of the filter has been created, its characteristics have been studied, and its operation has been tested in real conditions. The obtained results indicate the prospects of the technology used. Given that such filters play a key role in ensuring the electromagnetic compatibility of diagnostic receiving equipment and the gyrotron, the proposed technology for manufacturing microwave components opens up possibilities of interest to a wide range of researchers.

About the authors

T. A. Khusainov

Institute of Applied Physics, Russian Academy of Sciences

Email: hta@ipfran.ru
603950, Nizhny Novgorod, Russia

M. D. Proyavin

Institute of Applied Physics, Russian Academy of Sciences

Email: pmd@ipfran.ru
603950, Nizhny Novgorod, Russia

L. V. Lubyako

Institute of Applied Physics, Russian Academy of Sciences

Author for correspondence.
Email: pmd@ipfran.ru
603950, Nizhny Novgorod, Russia

References

  1. Denisov G.G., Litvak A.G., Myasnikov V.E., Tai E.M., Zapevalov V.E. // Nucl. Fusion. 2008. V. 48. P. 054007. https://doi.org/10.1088/0029-5515/48/5/054007
  2. Ковалев Н.Ф., Резников М.Г., Слуцкер Я.З. // ПТЭ. 1979. № 1. С. 120.
  3. Denisov G.G. // 18th International Conference on Infrared and Millimeter Waves. Colchester, United Kingdom, 1993. V. 2104. P. 21044Z. https://doi.org/10.1117/12.2298611
  4. Geist T., Bergbauer M. // Int. J. of Infrared and MM Waves. 1994. V. 15 (12). P. 2043. https://doi.org/10.1007/BF02096276
  5. Dryagin Yu., Skalyga N. and Geist T. // Int. J. of Infrared and MM Waves. 1996. V. 17. P. 1199. https://doi.org/10.1007/BF02088905
  6. Danilov Y.Y., Denisov G.G., Khozin M.A., Panin A., Rodin Y. // IEEE Transactions on Plasma Science. 2014. V. 42 (6). P. 1685. https://doi.org/10.1109/TPS.2014.2318352
  7. Лубяко Л.В., Суворов Е.В., Буров А.Б., Штанюк А.М., Дрягин Ю.А., Кукин Л.М., Скалыга Н.К. // ЖТФ. 1998. Т. 68. № 8. С. 54.
  8. Лубяко Л.В., Шалашов А.Г., Андриянов А.Ф., Божков В.Г., Господчиков Е.Д., Дорожкина Д.С. // Известия вузов. Радиофизика. 2021. Т. 64. № 5. С. 373. https://doi.org/10.52452/00213462_2021_64_05_373
  9. Shalashov A.G., Gospodchikov E.D., Khusainov T.A., Lubyako L.V., Solomakhin A.L., Viktorov M.E. // JINST. 2021. V. 16. P. 07007. https://doi.org/10.1088/1748-0221/16/07/P07007
  10. Shalashov A.G., Gospodchikov E.D., Khusainov T.A., Lubyako L.V., Solomakhin A.L., Yakovlev D.V. // Phys. Plasmas. 2022. V. 29. P. 080702. https://doi.org/10.1063/5.0101751
  11. Проявин М.Д., Котомина В.Е. Заявка на изобретение № 2022120582 РФ от 26.07.2022.
  12. Proyavin M.D., Vikharev A.A., Fedotov A.E., Sobolev D.I., Peskov N.Yu., Makhalov P.B., Shmelev M.Yu., Kuzikov S.V. // Radiophys Quantum Electronics. 2020. V. 63. P. 469. https://doi.org/10.1007/s11141-021-10072-0
  13. Gashturi A.P., Palitsin A.V., Goykhman M.B., Gromov A.V., Panin A., Proyavin M.D., Rodin Y.V. // 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). IEEE, 2021. P. 1. https://doi.org/10.1109/IRMMW-THz50926.2021.9567076
  14. Morozkin M., Manuilov V., Proyavin M., Kotomina V., Kamenskiy M., Orlovskiy A. // International Conference on Actual Problems of Electron Devices Engineering (APEDE). 2022. P. 55. https://doi.org/10.1109/APEDE53724.2022.9912957
  15. Peskov N.Y., Abubakirov E.B., Denisenko A.N., Ginzburg N.S., Martyanov I.V., Proyavin M.D., Vikharev A.A., Zaslavsky V.Y. // 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). IEEE, 2021. P. 1. https://doi.org/10.1109/IRMMW-THz50926.2021.9567272

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (554KB)
3.

Download (1MB)
4.

Download (1MB)
5.

Download (111KB)
6.

Download (70KB)

Copyright (c) 2023 Т.А. Хусаинов, М.Д. Проявин, Л.В. Лубяко