Manufacturing Quartz Hollow Fibers: Solution to the Problem of Stability in the Drawing of Capillaries

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Solving the problem of the stability of the manufacturing process (“drawing”) of microstructured optical fibers (“holey fibers”) is of paramount importance for determining effective technological modes of production. In this study, the modified capillary drawing model proposed by the authors, which takes into account inertial, viscous, and surface tension forces, as well as all types of heat transfer, was used. Based on the linear theory of stability, the regions of stability of the capillary drawing process were determined. During the study, the influence of the drawing ratio and inertia forces (Reynolds number) on the stability of the process under consideration was evaluated. The existence of optimal parameters of the heating element is shown: temperature distribution over the furnace surface and furnace radius at which the stability of the process of drawing quartz tubes increases significantly (several times).

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

About the authors

V. P. Pervadchuk

Perm National Research Polytechnic University

Email: al_derevyankina@mail.ru
614990, Perm, Russia

D. B. Vladimirova

Perm National Research Polytechnic University

Email: al_derevyankina@mail.ru
614990, Perm, Russia

A. L. Derevyankina

Perm National Research Polytechnic University

Author for correspondence.
Email: al_derevyankina@mail.ru
614990, Perm, Russia

References

  1. Pendão C., Silva I. // Sensors. 2022. V. 22. P. 7554. https://doi.org/10.3390/s22197554
  2. Lin W., Zhang C., Li L., Liang S. // In Proceedings of the 2012 Symposium on Photonics and Optoelectronics. Shanghai. China. 21–23 May 2012. P. 1.
  3. Krohn D.A., MacDougall T., Mendez A. Fiber Optic Sensors: Fundamentals and Applications. Spie Press. Bellingham. WA. 2014.
  4. Xiao F., Chen G.S., Hulsey J.L. // Sensors. 2017. V. 17. P. 2390. https://doi.org/10.3390/s17102390
  5. Padma S., Umesh S., Pant S., Srinivas T. // J. Biomedical Opt. 2016. V. 21. P. 86012. https://doi.org/10.1117/1.JBO.21.8.086012
  6. Kahandawa G.C., Epaarachchi J., Wang H., Lau K. // Photonic Sens. 2012. V. 2. P. 203. https://doi.org/10.1007/s13320-012-0065-4
  7. Qiao X., Shao Z., Bao W., Rong. Q. // Sensors. 2017. V. 17. P. 429. https://doi.org/10.3390/s17030429
  8. Nie M., Xia Y.H., Yang H.S. // Clust. Comput. 2019. V. 22. P. 8217. https://doi.org/10.1007/s10586-018-1727-9
  9. Wu T., Liu G., Fu S., Xing F. // Sensors 2020. V. 20. P. 4517. https://doi.org/10.3390/s20164517
  10. Reeves W., Knight J., Russell P., Roberts P. // Opt. Express 2002. 10. 609. https://doi.org/10.1364/oe.10.000609
  11. Habib M.A., Anower M.S., Hasan M.R. // Curr. Opt. Photon. 2017. V. 1. P. 567. https://doi.org/10.3807/COPP.2017.1.6.567
  12. Troia B., Paolicelli A., Leonardis F., Passaro V. // Adv. Photon. Cryst. 2013. V. 1. P. 241. https://doi.org/10.5772/53897
  13. Maidi A.M., Kalam M.A., Begum F. // Photonics. 2022. V. 9. P. 958. https://doi.org/10.3390/photonics9120958
  14. Griffin S. // Lc Gc North America. 2002. V. 20 (10). P. 928.
  15. Mcmican R. // Reinforced Plastics 2012. V. 56 (5). P. 9. https://doi.org/10.1016/S0034-3617(12)70110-8
  16. Xue C., Qin Y., Fu H., Fan J. // Polymers 2022. V. 14. P. 3372. https://doi.org/10.3390/ polym14163372
  17. Wang K.Y., Liu R.X., Zhang L., Yan Y.H., Sui X.Y., Zhou C.L., Cheng Z.Q. // IOP Conf. Series: Materials Science and Engin. 2019. P. 678. https://doi.org/10.1088/1757-899X/678/1/012076
  18. Fitt A.D., Furusawa K., Monro T.M., Please C.P. // J. Light. Technol. 2001. V. 19. P. 1924. https://doi.org/10.1109/50.971686
  19. Pervadchuk V., Vladimirova D., Gordeeva I., Kuchumov A.G., Dektyarev D. // Fibers 2021. V. 9. P. 77. https://doi.org/10.3390/fib9120077
  20. Lienard I.V., John H. A Heat Transfer Textbook. Phlogiston Press: Cambridge. MA. 2017.
  21. Fitt A.D., Furusawa K., Monro T.M., Please C.P., Lienard I.V., John H. // J. Light. Technol. 2001. V. 19. P. 1924. https://doi.org/10.1109/50.971686
  22. Drazin P.G., Reid W.H. Hydrodynamic Stability, Cambridge University Press. 2010. https://doi.org/10.1017/CBO9780511616938
  23. Morgan R. // Math. J. 2015. V. 16. P. 67.
  24. Rodríguez R.S., Avalos G.G., Gallegos N.B., Ayala-jaimes G., Garcia A.P. // Symmetry 2021. 13. 854. https://doi.org/10.3390/sym13050854
  25. Jung H.W., Hyun J.C. // Rheology Rev. 2006. V. 2006. P. 131.
  26. Bechert M., Scheid B. // Phys. Rev. Fluids 2017. V. 2. P. 10.1103. https://doi.org/10.1103/PhysRevFluids.2.113905
  27. Van der Hout R. // Europ. J. Appl. Math. 2000. V. 11. P. 129. https://doi.org/10.1017/S0956792599004118
  28. Hagen T., Langwallner B. // ZAMM·Z. Angew. Math. Mech. 2006. V. 86. P. 63. https://doi.org/10.1002/zamm.200410225
  29. Vasil’ev V.N., Dul’nev G.N., Naumchik V.D. // J. Engeen. Phys. 1988. V. 55. P. 918.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (174KB)
3.

Download (59KB)
4.

Download (156KB)
5.

Download (65KB)
6.

Download (83KB)
7.

Download (58KB)
8.

Download (61KB)
9.

Download (89KB)

Copyright (c) 2023 В.П. Первадчук, Д.Б. Владимирова, А.Л. Деревянкина