A Distributed Acoustic Sensor with a 120-km Sensing Range Based on a Phase-Sensitive Optical Time-Domain Reflectometer and a Remotely Pumped Erbium-Doped Fiber Amplifier
- Authors: Dudin A.S.1,2, Kharasov D.R.1, Fomiryakov E.A.1,2, Nikitin S.P.1, Nanii O.E.1,2, Treshchikov V.N.1
-
Affiliations:
- OOO T8
- Moscow State University
- Issue: No 5 (2023)
- Pages: 92-98
- Section: ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ ТЕХНИКА
- URL: https://rjraap.com/0032-8162/article/view/670418
- DOI: https://doi.org/10.31857/S003281622305018X
- EDN: https://elibrary.ru/ZVAZPO
- ID: 670418
Cite item
Abstract
The operating range of a distributed acoustic sensor based on a phase-sensitive optical time-domain reflectometer has been increased using an erbium-doped fiber amplifier with remote forward pumping. It is shown that by incorporating a single segment of erbium-doped fiber at a distance of 70 km and pumping it from the front end by a 500-mW laser at a wavelength of 1480 nm over the sensing fiber, it is possible to increase the operating range of the reflectometer by 45 km and, thereby, obtain the total operating range as large as 120 km along a standard single-mode fiber. We’re sorry, something doesn't seem to be working properly. Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
About the authors
A. S. Dudin
OOO T8; Moscow State University
Email: dudin.as@t8.ru
107076, Moscow, Russia; 119991, Moscow, Russia
D. R. Kharasov
OOO T8
Email: dudin.as@t8.ru
107076, Moscow, Russia
E. A. Fomiryakov
OOO T8; Moscow State University
Email: dudin.as@t8.ru
107076, Moscow, Russia; 119991, Moscow, Russia
S. P. Nikitin
OOO T8
Email: dudin.as@t8.ru
107076, Moscow, Russia
O. E. Nanii
OOO T8; Moscow State University
Email: dudin.as@t8.ru
107076, Moscow, Russia; 119991, Moscow, Russia
V. N. Treshchikov
OOO T8
Author for correspondence.
Email: dudin.as@t8.ru
107076, Moscow, Russia
References
- Муратов Э.М. Подготовка профессиональных кадров в магистратуре для цифровой экономики (ПКМ-2020). 2021. С. 201.
- Stajanca P., Chruscicki S., Homann T., Seifert S., Schmidt D., Habib A. // Sensors. 2018. V. 18. P. 2841. https://doi.org/10.3390/s18092841
- Wu H.Y., Qian H.Li, Xiao S., Fu Z., Rao Y. //CLEO: Applications and Technology. 2015. P. ATu1M. 4. https://doi.org/10.1364/CLEO_AT.2015.ATu1M.4
- Бухарин М.А., Шишков К.В. // Железнодорожный транспорт. 2020. № 4. С. 58.
- Бухарин М.А., Прокопенко С.В., Гуртовой К.В., Скубченко С.А., Трещиков В.Н. // Автоматика, связь, информатика. 2019. № 9. С. 8.
- Mateeva A., Mestayer J., Cox B., Kiyashchenko D., Wills P., Lopez J., Roy J. // SEG Technical Program Expanded Abstracts 2012. Society of Exploration Geophysicists. 2012. P. 1.
- Nikitin S.P., Kuzmenkov A.I., Gorbulenko V.V., Nanii O.E., Treshchikov V.N. // Laser Phys. 2018. V. 28. P. 085107. https://doi.org/10.1088/1555-6611/aac714
- Бухарин М.А., Спиридонов Е.П., Филютич Е.А., Остапенко Д.А., Нуруллин А.А., Трещиков В.Н. // Фотон-экспресс. 2021. № 6 (174). С. 249.
- Shatalin S.V., Treschikov V.N., Rogers A.J. // Appl. Opt. 1998. V. 37. P. 5600.
- Parker T., Shatalin S., Farhadiroushan M. // First Break. 2014. V. 32. P. 63. https://doi.org/10.3997/1365-2397.2013034
- Mestayer J., Cox B., Wills P., Kiyashchenko D., Lopez J., Costello M., Bourne S., Ugueto G., Lupton R., Solano G., Hill D., Lewis A. // SEG technical program expanded abstracts 2011. Society of Exploration Geophysicists. 2011. P. 4253. https://doi.org/10.1190/1.3628095
- Nikitin S.P., Ulanovskiy P.I., Kuzmenkov A.I., Nanii O.E., Treshchikov V.N. // Laser Physics. 2016. V. 26. P. 105106. https://doi.org/10.1088/1054-660X/26/10/105106
- Alekseev A.E., Vdovenko V.S., Gorshkov B.G., Potapov V.T., Simikin D.E. // Laser Physics. 2016. V. 26. P. 035101. https://doi.org/10.1088/1054-660X/26/3/035101
- Харасов Д.Р., Чурилин И.А., Никитин С.П., Наний О.Е., Трещиков В.Н. // 8-й Российский семинар по волоконным лазерам. 2018. P. 208. https://doi.org/10.31868/RFL2018.208-210
- Martins H.F., Martın-Lopez S., Corredera P., Filograno M.L., Frazao O., Gonzalez-Herraez M. // J. Lightwave Technol. 2014. V. 32. P. 1510. https://doi.org/10.1109/JLT.2014.2308354
- Martins H.F., Martın-Lopez S., Corredera P., Filograno M.L., Frazao O., Gonzalez-Herraez M. // J. Lightwave Technol. 2015. V. 33. P. 2628. https://doi.org/10.1109/JLT.2015.2396359
- Peng F., Peng Z.P., Jia X.H., Rao Y.J., Wang Z.N., Wu H. // Optical Fiber Communication Conference. 2014. P. M3J. 4. https://doi.org/10.1364/OFC.2014.M3J.4
- Kharasov D.R., Naniy O.E., Nikitin S.P., Treschikov V.N. // IEEE. 2018. P. 285. https://doi.org/10.1109/LO.2018.8435872
- Kharasov D.R., Fomiryakov E.A., Nikitin S.P., Nanii O.E., Treshchikov V.N. // IEEE. 2020. P. 1. https://doi.org/10.1109/ICLO48556.2020.9285481
- Kharasov D.R., Fomiryakov E.A., Bengalskii D.M, Nikitin S.P., Nanii O.E., Treshchikov V.N. // IEEE. 2022. P. 1. https://doi.org/10.1109/ICLO54117.2022.9840022
- Wang Z.N., Li J., Fan M.Q., Zhang L., Peng F., Wu H., Zeng J.J., Zhou Y., Rao Y.J. // Opt. Lett. 2014. V. 39. P. 4313. https://doi.org/10.1364/OL.39.004313
- Arioka T., Nakamura K. // Opt. Continuum. 2022. V. 1. P. 1375. https://doi.org/10.1364/OPTCON.460475
- Tian X., Dang R., Tan D., Liu L., & Wang H. // Opt. Communication. Optical Fiber Sensors, and Optical Memories for Big Data Storage. SPIE. 2016. V. 10158. P. 191. https://doi.org/10.1117/12.2246763
- Sha Z., Feng H., Shi Y., Zhang W., Zeng Z. // IEEE Photonics Technol. Lett. 2017. V. 29. № 16. P. 1308. https://doi.org/10.1109/LPT.2017.2721963
- Van Putten L.D., Masoudi A., Brambilla G. // Opt. Lett. 2019. V. 44. P. 5925. https://doi.org/10.1364/OL.44.005925
- Официальное описание волокна OFS AcoustiSens URL: https://www.ofsoptics.com/wp-content/uploads/AcoustiSens-Wideband-GS86545-web.pdf (дата обращения: 23.01.2023).
- Kharasov D.R., Bengalskii D.M., Fomiryakov E.A., Nanii O.E., Bukharin M.A., Nikitin S.P., Treshchi-kov V.N. // Moscow University Physics Bulletin. 2021. V. 76. № 3. P. 167. https://doi.org/10.3103/S0027134921030048
- Farhadiroushan M. // 80th EAGE Conference & Exhibition 2018 Workshop Programme. European Association of Geoscientists & Engineers. 2018. P. cp-556-00043. https://doi.org/10.3997/2214-4609.201801921
- Lalam N., Lu P., Buric M., Ohodnicki P.R. // Photonic Instrumentation Engineering VII. SPIE. 2020. V. 11287. P. 165. https://doi.org/10.1117/12.2545089
- Kharasov D.R., Bengalskii D.M., Vyatkin M.Yu., Nanii O.E., Fomiryakov E.A., Nikitin S.P., Popov S.M., Chamorov-sky Yu.K., Treshchikov V.N. // Quantum Electron. 2020. V. 50. P. 510. https://doi.org/10.1070/QEL17232
- Cedilnik G., Lees G., Schmidt P.E., Herstrøm S., Geisler T. // IEEE Sensors Lett. 2019. V. 3. P. 1. https://doi.org/10.1109/LSENS.2019.2895249
- Masoudi A., Beresna M., Brambilla G. // Opt. Lett. 2021. V. 46. P. 552. https://doi.org/10.1364/OL.413206
- Yu J., Liu J., Hu Q., Xu J., Nie M., Chen X., Wu J., Zhang X. Liu H., Yu S., Li G., Qin X. // Opt. Fiber Sensors. 2022. P. Th4. 11. https://doi.org/10.1364/OFS.2022.Th4.11
- Wang Z.N., Zeng J.J., Li J., Fan M.Q., Wu H., Peng F., Zhang L., Zhou Y., Rao Y.J. // Opt. Lett. 2014. V. 39. P. 5866. https://doi.org/10.1364/OL.39.005866
- Headley C., Agrawal G.P. Raman amplification in fiber optical communication systems. Elsevier Academic Press. USA. 2005.
- Shikhaliev I.I., Gainov V.V., Dorozhkin A.N., Nanii O.E.E., Konyshev V.A., Treshchikov V.N. // Quantum Electron. 2017. V. 47. P. 906. https://doi.org/10.1070/QEL16405
- Bertholds A., Dandliker R. // J. Lightwave Technol. 1988. V. 6. P. 17. https://doi.org/10.1109/50.3956
- Nikitin S., Fomiryakov E., Kharasov D., Nanii O., Treshchikov V. // J. Lightwave Technol. 2019. V. 38. P. 1446. https://doi.org/10.1109/JLT.2019.2952688
- Gabai H., Eyal A. // IEEE. 2017. P. 1. https://doi.org/10.1117/12.2265527
- Фомиряков Э.А., Харасов Д.Р., Никитин С.П., Наний О.Е., Трещиков В.Н. // Фотон-экспресс. 2021. №. 6 (174). P. 252. https://doi.org/10.24412/2308-6920-2021-6-252-253
Supplementary files
