A Distributed Acoustic Sensor with a 120-km Sensing Range Based on a Phase-Sensitive Optical Time-Domain Reflectometer and a Remotely Pumped Erbium-Doped Fiber Amplifier

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The operating range of a distributed acoustic sensor based on a phase-sensitive optical time-domain reflectometer has been increased using an erbium-doped fiber amplifier with remote forward pumping. It is shown that by incorporating a single segment of erbium-doped fiber at a distance of 70 km and pumping it from the front end by a 500-mW laser at a wavelength of 1480 nm over the sensing fiber, it is possible to increase the operating range of the reflectometer by 45 km and, thereby, obtain the total operating range as large as 120 km along a standard single-mode fiber. We’re sorry, something doesn't seem to be working properly. Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

About the authors

A. S. Dudin

OOO T8; Moscow State University

Email: dudin.as@t8.ru
107076, Moscow, Russia; 119991, Moscow, Russia

D. R. Kharasov

OOO T8

Email: dudin.as@t8.ru
107076, Moscow, Russia

E. A. Fomiryakov

OOO T8; Moscow State University

Email: dudin.as@t8.ru
107076, Moscow, Russia; 119991, Moscow, Russia

S. P. Nikitin

OOO T8

Email: dudin.as@t8.ru
107076, Moscow, Russia

O. E. Nanii

OOO T8; Moscow State University

Email: dudin.as@t8.ru
107076, Moscow, Russia; 119991, Moscow, Russia

V. N. Treshchikov

OOO T8

Author for correspondence.
Email: dudin.as@t8.ru
107076, Moscow, Russia

References

  1. Муратов Э.М. Подготовка профессиональных кадров в магистратуре для цифровой экономики (ПКМ-2020). 2021. С. 201.
  2. Stajanca P., Chruscicki S., Homann T., Seifert S., Schmidt D., Habib A. // Sensors. 2018. V. 18. P. 2841. https://doi.org/10.3390/s18092841
  3. Wu H.Y., Qian H.Li, Xiao S., Fu Z., Rao Y. //CLEO: Applications and Technology. 2015. P. ATu1M. 4. https://doi.org/10.1364/CLEO_AT.2015.ATu1M.4
  4. Бухарин М.А., Шишков К.В. // Железнодорожный транспорт. 2020. № 4. С. 58.
  5. Бухарин М.А., Прокопенко С.В., Гуртовой К.В., Скубченко С.А., Трещиков В.Н. // Автоматика, связь, информатика. 2019. № 9. С. 8.
  6. Mateeva A., Mestayer J., Cox B., Kiyashchenko D., Wills P., Lopez J., Roy J. // SEG Technical Program Expanded Abstracts 2012. Society of Exploration Geophysicists. 2012. P. 1.
  7. Nikitin S.P., Kuzmenkov A.I., Gorbulenko V.V., Nanii O.E., Treshchikov V.N. // Laser Phys. 2018. V. 28. P. 085107. https://doi.org/10.1088/1555-6611/aac714
  8. Бухарин М.А., Спиридонов Е.П., Филютич Е.А., Остапенко Д.А., Нуруллин А.А., Трещиков В.Н. // Фотон-экспресс. 2021. № 6 (174). С. 249.
  9. Shatalin S.V., Treschikov V.N., Rogers A.J. // Appl. Opt. 1998. V. 37. P. 5600.
  10. Parker T., Shatalin S., Farhadiroushan M. // First Break. 2014. V. 32. P. 63. https://doi.org/10.3997/1365-2397.2013034
  11. Mestayer J., Cox B., Wills P., Kiyashchenko D., Lopez J., Costello M., Bourne S., Ugueto G., Lupton R., Solano G., Hill D., Lewis A. // SEG technical program expanded abstracts 2011. Society of Exploration Geophysicists. 2011. P. 4253. https://doi.org/10.1190/1.3628095
  12. Nikitin S.P., Ulanovskiy P.I., Kuzmenkov A.I., Nanii O.E., Treshchikov V.N. // Laser Physics. 2016. V. 26. P. 105106. https://doi.org/10.1088/1054-660X/26/10/105106
  13. Alekseev A.E., Vdovenko V.S., Gorshkov B.G., Potapov V.T., Simikin D.E. // Laser Physics. 2016. V. 26. P. 035101. https://doi.org/10.1088/1054-660X/26/3/035101
  14. Харасов Д.Р., Чурилин И.А., Никитин С.П., Наний О.Е., Трещиков В.Н. // 8-й Российский семинар по волоконным лазерам. 2018. P. 208. https://doi.org/10.31868/RFL2018.208-210
  15. Martins H.F., Martın-Lopez S., Corredera P., Filograno M.L., Frazao O., Gonzalez-Herraez M. // J. Lightwave Technol. 2014. V. 32. P. 1510. https://doi.org/10.1109/JLT.2014.2308354
  16. Martins H.F., Martın-Lopez S., Corredera P., Filograno M.L., Frazao O., Gonzalez-Herraez M. // J. Lightwave Technol. 2015. V. 33. P. 2628. https://doi.org/10.1109/JLT.2015.2396359
  17. Peng F., Peng Z.P., Jia X.H., Rao Y.J., Wang Z.N., Wu H. // Optical Fiber Communication Conference. 2014. P. M3J. 4. https://doi.org/10.1364/OFC.2014.M3J.4
  18. Kharasov D.R., Naniy O.E., Nikitin S.P., Treschikov V.N. // IEEE. 2018. P. 285. https://doi.org/10.1109/LO.2018.8435872
  19. Kharasov D.R., Fomiryakov E.A., Nikitin S.P., Nanii O.E., Treshchikov V.N. // IEEE. 2020. P. 1. https://doi.org/10.1109/ICLO48556.2020.9285481
  20. Kharasov D.R., Fomiryakov E.A., Bengalskii D.M, Nikitin S.P., Nanii O.E., Treshchikov V.N. // IEEE. 2022. P. 1. https://doi.org/10.1109/ICLO54117.2022.9840022
  21. Wang Z.N., Li J., Fan M.Q., Zhang L., Peng F., Wu H., Zeng J.J., Zhou Y., Rao Y.J. // Opt. Lett. 2014. V. 39. P. 4313. https://doi.org/10.1364/OL.39.004313
  22. Arioka T., Nakamura K. // Opt. Continuum. 2022. V. 1. P. 1375. https://doi.org/10.1364/OPTCON.460475
  23. Tian X., Dang R., Tan D., Liu L., & Wang H. // Opt. Communication. Optical Fiber Sensors, and Optical Memories for Big Data Storage. SPIE. 2016. V. 10158. P. 191. https://doi.org/10.1117/12.2246763
  24. Sha Z., Feng H., Shi Y., Zhang W., Zeng Z. // IEEE Photonics Technol. Lett. 2017. V. 29. № 16. P. 1308. https://doi.org/10.1109/LPT.2017.2721963
  25. Van Putten L.D., Masoudi A., Brambilla G. // Opt. Lett. 2019. V. 44. P. 5925. https://doi.org/10.1364/OL.44.005925
  26. Официальное описание волокна OFS AcoustiSens URL: https://www.ofsoptics.com/wp-content/uploads/AcoustiSens-Wideband-GS86545-web.pdf (дата обращения: 23.01.2023).
  27. Kharasov D.R., Bengalskii D.M., Fomiryakov E.A., Nanii O.E., Bukharin M.A., Nikitin S.P., Treshchi-kov V.N. // Moscow University Physics Bulletin. 2021. V. 76. № 3. P. 167. https://doi.org/10.3103/S0027134921030048
  28. Farhadiroushan M. // 80th EAGE Conference & Exhibition 2018 Workshop Programme. European Association of Geoscientists & Engineers. 2018. P. cp-556-00043. https://doi.org/10.3997/2214-4609.201801921
  29. Lalam N., Lu P., Buric M., Ohodnicki P.R. // Photonic Instrumentation Engineering VII. SPIE. 2020. V. 11287. P. 165. https://doi.org/10.1117/12.2545089
  30. Kharasov D.R., Bengalskii D.M., Vyatkin M.Yu., Nanii O.E., Fomiryakov E.A., Nikitin S.P., Popov S.M., Chamorov-sky Yu.K., Treshchikov V.N. // Quantum Electron. 2020. V. 50. P. 510. https://doi.org/10.1070/QEL17232
  31. Cedilnik G., Lees G., Schmidt P.E., Herstrøm S., Geisler T. // IEEE Sensors Lett. 2019. V. 3. P. 1. https://doi.org/10.1109/LSENS.2019.2895249
  32. Masoudi A., Beresna M., Brambilla G. // Opt. Lett. 2021. V. 46. P. 552. https://doi.org/10.1364/OL.413206
  33. Yu J., Liu J., Hu Q., Xu J., Nie M., Chen X., Wu J., Zhang X. Liu H., Yu S., Li G., Qin X. // Opt. Fiber Sensors. 2022. P. Th4. 11. https://doi.org/10.1364/OFS.2022.Th4.11
  34. Wang Z.N., Zeng J.J., Li J., Fan M.Q., Wu H., Peng F., Zhang L., Zhou Y., Rao Y.J. // Opt. Lett. 2014. V. 39. P. 5866. https://doi.org/10.1364/OL.39.005866
  35. Headley C., Agrawal G.P. Raman amplification in fiber optical communication systems. Elsevier Academic Press. USA. 2005.
  36. Shikhaliev I.I., Gainov V.V., Dorozhkin A.N., Nanii O.E.E., Konyshev V.A., Treshchikov V.N. // Quantum Electron. 2017. V. 47. P. 906. https://doi.org/10.1070/QEL16405
  37. Bertholds A., Dandliker R. // J. Lightwave Technol. 1988. V. 6. P. 17. https://doi.org/10.1109/50.3956
  38. Nikitin S., Fomiryakov E., Kharasov D., Nanii O., Treshchikov V. // J. Lightwave Technol. 2019. V. 38. P. 1446. https://doi.org/10.1109/JLT.2019.2952688
  39. Gabai H., Eyal A. // IEEE. 2017. P. 1. https://doi.org/10.1117/12.2265527
  40. Фомиряков Э.А., Харасов Д.Р., Никитин С.П., Наний О.Е., Трещиков В.Н. // Фотон-экспресс. 2021. №. 6 (174). P. 252. https://doi.org/10.24412/2308-6920-2021-6-252-253

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (40KB)
3.

Download (106KB)
4.

Download (233KB)
5.

Download (220KB)
6.

Download (162KB)
7.

Download (404KB)

Copyright (c) 2023 А.С. Дудин, Д.Р. Харасов, Э.А. Фомиряков, С.П. Никитин, О.Е. Наний, В.Н. Трещиков