Experimental Investigations Into Characteristics of Mandelshtam–Brillouin Scattering in Single-Mode Optical Fiber of Various Types

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of experimental studies into the Mandelstam–Brillouin scattering characteristics are presented for single-mode optical fibers of various types and manufacturers. The experimental dependences of optical fibers obtained using a Brillouin optical reflectometer (graphs of the distribution of the Brillouin scattering spectrum along the length of the fiber and multireflectograms) are presented. For each type of optical fibers considered, an estimate of the Brillouin frequency shift is given, the value of which, at wavelengths of laser radiation used in telecommunication systems, refers to the microwave range. The frequency dependences of the Mandelstam–Brillouin scattering characteristics of some varieties of single-mode optical fibers with different cutoff wavelengths are presented. A comparative analysis of their characteristics with the characteristics of previously studied single-mode optical fibers is carried out. Optical fibers of similar varieties (but different manufacturers) can have noticeable differences in the frequency response of Mandelstam–Brillouin scattering. A table with the main characteristics of Mandelstam–Brillouin scattering is presented for all experimentally studied single-mode optical fibers.

About the authors

I. V. Bogachkov

Omsk State Technical University

Email: bogachkov@mail.ru
644050, Omsk, Russia

N. I. Gorlov

Siberian State University of Telecommunications and Informatics

Author for correspondence.
Email: gorlovnik@yandex.ru
630102, Novosibirsk, Russia

References

  1. Bogachkov I.V. // J. Phys. 2018. V. 1015. P. 1. https://doi.org/10.1088/1742-6596/1015/2/022004
  2. Bogachkov I.V., Gorlov N.I. // J. Phys. 2022. V. 2182. P. 1. https://doi.org/10.1088/1742-6596/2182/1/012089
  3. Bogachkov I.V. // T-comm, 2019. V. 13. № 1. P. 60.
  4. Bogachkov I.V., Gorlov N.I. // J. Phys. 2021. V. 1791. P. 1. https://doi.org/10.1088/1742-6596/1791/1/012039
  5. Bogachkov I.V., Trukhina A.I. Researches of Initial Value of the Brillouin Frequency Shift in Optical Fibers of Different Types // Systems of signals generating and processing in the field of onboard communications. Moscow. 2018. P. 1. https://doi.org/10.1109/SOSG.2018.8350574
  6. Kobyakov A., Sauer M., Chowdhury D. // Adv. Optic. Photon. 2010. V. 2. P. 1.
  7. Ruffin A.B., Li M.-J., Chen X., Kobyakov A., Annunziata F. // Opt. Lett., 2005. V. 30. P. 3123.
  8. Gorlov N.I., Bogachkov I.V. An Analysis of the Influence of the Physical Layers Structure of Optical Fibers on the Mandelstam – Brillouin Scattering Characteristics // Systems of Signal Synchronization, Generating and Processing in Telecommunications (SINKHROINFO–2020). Kaliningrad. 2020. https://doi.org/10.1109/SYNCHROINFO49631.2020.9166063
  9. Bogachkov I.V. Research Characteristics of the Mandelstam – Brillouin Scattering in Specialized Single-mode Optical Fibers // Dynamics of Systems, Mechanisms and Machines, Dynamics. Omsk. 2017. https://doi.org/10.1109/Dynamics.2017.8239436
  10. Liu X. Characterization of Brillouin scattering spectrum in LEAF fiber. University of Ottawa, 2011. 102 p.
  11. Koyamada Y., Sato S., Nakamura S., Sotobayashi H., Chujo W. // Lightwave Technol. 2004. V. 22. P. 631.
  12. Dragic P.D. // J. Opt. Soc. Am. B. 2009. V. 26. P. 1614.
  13. Law P.-C., Liu Y.-Sh., Croteau A., Dragic P.D. // Opt. Mater. Express. 2011. V. 1. P. 686.
  14. Zou W., He Z., Hotate K. // Opt. Express. 2008. V. 16. P. 18804.
  15. Sikali Mamdem Y., Pheron X., Taillade F. Two-dimensional FEM Analysis of Brillouin gain spectra in acoustic guiding and antiguiding single mode optical fibers // COMSOL Conference. Proceedings. Paris. 2010.
  16. Belokrylov M.E., Konstantinov Y.A., Latkin K.P., Claude D., Seleznev D.A., Stepin A.A., Konin Y.A, Shcherbakova V.A., Kashina R.R. // Instruments Exp. Tech. 2020. V. 63. P. 48. https://doi.org/10.1134/S0020441220050012
  17. Kim Y.H., Song K.Y. // J. Lightwave Technol. 2015. V. 33. P. 4922.
  18. Yu Q., Bao X., Chen L. // Opt. Lett. 2004. V. 29. P. 17.
  19. Burdin V.V., Konstantinov Y.A., Claude D., Latkin K.P., Belokrylov M.E., Krivosheev A.I., Tsibinogina M.K. // Instruments Exp. Tech., 2021. V. 64. P. 768. https://doi.org/10.1134/S0020441221050031
  20. Burdin V.V., Konstantinov Y.A., Pervadchuk V.P., Smir-nov A.S. // Quantum Electron. 2013. V. 43. P. 531. https://doi.org/10.1070/QE2013v043n06ABEH014995

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (300KB)
3.

Download (215KB)
4.

Download (494KB)
5.

Download (209KB)
6.

Download (384KB)
7.

Download (605KB)
8.

Download (420KB)

Copyright (c) 2023 И.В. Богачков, Н.И. Горлов