A Modification of the Backward Correlation Method for the Brillouin Frequency Shift Accurate Extraction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An improved method for extracting the Brillouin frequency shift in postprocessing of a given Brillouin gain spectrum is presented. Modification of the method made it possible to expand the boundaries of its applicability to the region of noisy spectra with a signal-to-noise ratio (SNR) below 0 dB. The modified method can be successfully used in distributed fiber-optic sensors operating on the Brillouin scattering principle, especially in long-distance sensing lines.

About the authors

F. L. Barkov

Perm Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: fbarkov@pstu.ru
614990, Perm, Russia

Yu. A. Konstantinov

Пермский федеральный исследовательский центр УрО РАН

Author for correspondence.
Email: fbarkov@pstu.ru
614990, Perm, Russia

References

  1. Bao X., Webb D.J., Jackson D.A. // Opt. Lett. 1993. V. 18. P. 1561. https://doi.org/10.1364/OL.18.001561
  2. Soto M.A., Thévenaz L. // Opt. Express. 2013. V. 21. P. 31347. https://doi.org/10.1364/OE.21.031347
  3. Feng C., Preussler S., Kadum J., Schneider T. // Sensors. 2019. V. 19. P. 2878. https://doi.org/10.3390/s19132878
  4. Li C., Lu Y., Zhang X., Wang F. // Electron. Lett. 2012. V. 48. № 18. P. 1139. https://doi.org/10.1049/el.2012.1248
  5. Urricelqui J., Sagues M., Loayssa A. // Opt. Express. 2014. V. 22. № 15. P. 18195. https://doi.org/10.1364/OE.22.018195
  6. Zhou F., Gan J., Lv, H., Cui L. // IOP Conf. Ser. Earth Environ. Sci. 2018. V. 189. P. 032026. https://doi.org/10.1088/1755-1315/189/3/032026
  7. Feng C., Lu X., Preussler S., Schneider T. // J. Light. Technol. 2019. V. 37. P. 5231. https://doi.org/10.1109/JLT.2019.2930919
  8. Li C., Li Y. // Proc. of the 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing Beijing. China. 2009. P. 24. https://doi.org/10.1109/WICOM.2009.5303692
  9. Yan Z., Zhong S., Lin L., Cui Z. // Mathematics. 2021. V. 9. P. 2176. https://doi.org/10.3390/math9172176
  10. Amini K., Rostami F. // J. Comput. Appl. Math. 2015. V. 288. P. 341. https://doi.org/10.1016/j.cam.2015.04.040
  11. Horiguchi T., Masui Y., Zan M. // Sensors. 2019. V. 19. P. 1497. https://doi.org/10.3390/s19071497
  12. Farahani M.A., Castillo-Guerra E., Colpitts B.G. // Opt. Lett. 2011. V. 36. P. 4275. https://doi.org/10.1364/OL.36.004275
  13. Ruiz-Lombera R., Fuentes A., Rodriguez-Cobo L., Lopez-Higuera J.M., Mirapeix J. // J. Light. Technol. 2018. V. 36. P. 2114. https://doi.org/10.1109/JLT.2018.2805362
  14. Lalam N., Venketeswaran A., Lu P., Buric M.P. Probabilistic deep neural network based signal processing for Brillouin gain and phase spectrums of vector BOTDA system // Optical Interconnects XXI / Eds. H. Schröder, R.T. Chen, WA, USA, Bellingham: SPIE, 2021. V. 11692. P. 1169213. https://doi.org/10.1117/12.2578509
  15. Wu H., Wan Y., Tang M., Chen Y., Zhao C., Liao R., Chang Y., Fu S., Shu P.P., Li D. // J. Light. Technol. 2019. V. 37. P. 2648. https://doi.org/10.1109/JLT.2018.2876909
  16. Karapanagiotis C., Wosniok A., Hicke K., Krebber K. // Sensors. 2021. V. 21. P. 2724. https://doi.org/10.3390/s21082724
  17. Nordin N.D., Zan M.S.D., Abdullah F. // Photonics. 2020. V. 7. P. 79. https://doi.org/10.3390/photonics7040079
  18. Nordin N.D., Zan M.S.D., Abdullah F. // Opt. Fiber Technol. 2020. V. 58. P. 102298. https://doi.org/10.1016/j.yofte.2020.102298
  19. Barkov F.L., Konstantinov Y.A., Krivosheev A.I. // Fibers. 2020. V. 8. P. 60. https://doi.org/10.3390/fib8090060
  20. Nordin N.D., Abdullah F., Zan M.S.D., Bakar A.A., Krivosheev A.I., Barkov F.L., Konstantinov Y.A. // Sensors. 2022. V. 22. P. 2677. https://doi.org/10.3390/s22072677
  21. Konstantinov Yu.A., Kryukov I.I., Pervadchuk V.P., Toroshin A.Yu. // Quantum Electronics. 2009. V. 39 № 11. P. 1068. https://doi.org/10.1070/QE2009v039n11ABEH014171

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (336KB)
3.

Download (465KB)
4.

Download (388KB)
5.

Download (123KB)
6.

Download (124KB)

Copyright (c) 2023 Ф.Л. Барков, Ю.А. Константинов