LED Internal Quantum Efficiency Meter

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A description and characteristics of the developed internal quantum efficiency (IQE) meter for InGaN LEDs are presented. The meter allows one to determine the IQE of LEDs in the current range up to 25 mA by measuring the watt-ampere characteristic and solving a system of equations relating the values of the radiation power of the LED at two currents with an approximating function obtained on the basis of the ABC model (models of recombination of charge carriers in a light-emitting heterostructure, where A, B, and C are the coefficients of nonradiative, radiative, and Auger recombination, respectively). Unlike the well-known Russian and foreign analogues, the IQE meter is characterized by simplicity of hardware implementation and allows determining the IQE of LEDs at room temperature. The operation of the meter was tested on the example of measuring the IQE of commercial green and blue InGaN LEDs. The meter can be used in scientific laboratories as well as in the input control of enterprises–manufacturers of LED products.

About the authors

V. A. Sergeev

Ulyanovsk Branch of the Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: sva@ulstu.ru
432071, Ulyanovsk, Russia

O. A. Radaev

Ulyanovsk Branch of the Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: sva@ulstu.ru
432071, Ulyanovsk, Russia

I. V. Frolov

Ulyanovsk Branch of the Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Author for correspondence.
Email: sva@ulstu.ru
432071, Ulyanovsk, Russia

References

  1. Шуберт Ф. Светодиоды / Под ред. А.Э. Юновича, Москва: Физматлит, 2008.
  2. Shim J.-I., Shin D.-S. // Nanophotonics. 2018. V. 7 (10). P. 1601. https://doi.org/10.1515/nanoph-2018-0094
  3. Marcinkevicius S., Yapparov R., Chow Y.C., Lynsky C., Nakamura S., DenBaars S.P., Speck J.S. // Appl. Phys. Lett. 2021. V. 119. P. 071102. https://doi.org/10.1063/5.0063237
  4. Wang L., Jin J., Mi C., Hao Z., Luo Y., Sun C., Han Y., Xiong B., Wang J., Li H. // Materials. 2017. V. 10. P. 1233. https://doi.org/10.3390/ma10111233
  5. Lu B., Wang L., Hao Z., Luo Y., Sun C., Han Y., Xiong B., Wang J., Li H., Chen K., Zhuo X., Li J., Kang J. // Applied Sciences. 2019. V. 9. P. 383. https://doi.org/10.3390/app9030383
  6. Прудаев И.А., Олешко В.И., Корепанов В.И., Лисицын В.М., Толбанов О.П., Ивонин И.В. Патент № 2503024 РФ.
  7. Han D.-P., Yamamoto K., Ishimoto S., Iwaya M., Takeuchi T., Kamiyama S., Akasaki I. // Appl. Phys. Express. 2019. V. 12. P. 032006. https://doi.org/10.7567/1882-0786/aafca2
  8. Фролов И.В., Сергеев В.А., Радаев О.А. // Журнал технической физики. 2021. Т. 91. С. 1264. https://doi.org/10.21883/JTF.2021.08.51102.54-21
  9. Сергеев В.А., Фролов И.В. Патент № 2740433 РФ.
  10. Van Opdorp C., 't Hooft G.W. // J. Appl. Phys. 1981. V. 52. P. 3827. https://doi.org/10.1063/1.329845
  11. Shim J.-I., Han D.-P., Oh C.-H., Jung H., Shin D.-S. // IEEE J. Quant. Electron. 2018. V. 54. № 2. Art. № 8000106. https://doi.org/10.1109/JQE.2018.2795044
  12. Фролов И.В., Сергеев В.А. Патент № 2789118 РФ.
  13. Karpov S. // Opt. Quantum Electron. 2015. V. 47. P. 1293. https://doi.org/10.1007/s11082-014-0042-9
  14. David A., Young N.G., Lund C., Craven M.D. // ECS J. Sol. State Sci.Technol. 2020. V. 9. P. 016021. https://doi.org/10.1149/2.0372001JSS
  15. Фролов И.В., Сергеев В.А. Диагностический контроль качества светодиодов по локальным параметрам электролюминесценции и фототока. Москва: СОЛОН-Пресс, 2023.
  16. Радаев О.А., Фролов И.В., Сергеев В.А. Радиоэлектронная техника: межвузов. сб. науч. тр. Ульяновск: УлГТУ, 2021. С. 116.
  17. Onwukaeme C., Lee B. and Ryu H.-Y. // Nanomaterials. 2022. V. 12. P. 2405. https://doi.org/10.3390/nano12142405
  18. Meyaard D.S., Lin G.-B., Cho J., Schubert E.F. Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies and Applications. 2014. P. 279.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (62KB)
3.

Download (68KB)
4.

Download (31KB)
5.

Download (31KB)
6.

Download (98KB)
7.

Download (58KB)

Copyright (c) 2023 В.А. Сергеев, О.А. Радаев, И.В. Фролов