Genome mapping of RNA‒DNA hybrids in Escherichia coli

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have mapped RNA‒DNA hybrids in the prokaryotic genome for the first time. Using the S9.6 antibody immunoprecipitation method (S9.6-DRIP) followed by whole-genome sequencing, we identified 219 unique peaks of RNA‒DNA hybrids in the genome of Escherichia coli TOP10. These peaks corresponded to 219 different genes and were predominantly distributed in the coding regions of the genome (88.12%). Analysis of individual genes containing RNA‒DNA hybrids revealed that they encode enzymes involved in important energy and metabolic processes in prokaryotes, such as lipoic acid synthesis.

Full Text

Restricted Access

About the authors

K. Y. Oleynikova

FRC Fundamentals of Biotechnology of the Russian Academy of Sciences

Email: nzhigalova@gmail.com

K.G. Skryabin Institute of Bioengineering

Russian Federation, Moscow, 119071

A. S. Ruzov

FRC Fundamentals of Biotechnology of the Russian Academy of Sciences

Email: nzhigalova@gmail.com

K.G. Skryabin Institute of Bioengineering

Russian Federation, Moscow, 119071

N. A. Zhigalova

FRC Fundamentals of Biotechnology of the Russian Academy of Sciences

Author for correspondence.
Email: nzhigalova@gmail.com

K.G. Skryabin Institute of Bioengineering

Russian Federation, Moscow, 119071

References

  1. Abakir A., Giles T. C., Cristini A., Foster J. M., Dai N., Starczak M., Crutchley J., Flatt L., Young L., Gaffney D. J., Denning C., Dalhus B., Emes R. D., Gackowski D., Corrêa I. R. Jr., Garcia-Perez J.L., Klungland A., Gromak N., Ruzov A. N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells // Nat. Genet. 2020. V. 1. P. 48‒55. https://doi.org/10.1038/s41588-019-0549-x
  2. Boguslawski S. J., Smith D. E., Michalak M. A., Mickelson K. E., Yehle C. O., Patterson W. L., Carrico R. J. Characterization of monoclonal antibody to DNA.RNA and its application to immunodetection of hybrids // J. Immunol. Methods. 1986. V. 89. P. 123–130. https://doi.org/10.1016/0022-1759(86)90040-2
  3. Brochu J., Vlachos-Breton E.Â., Sutherland S., Martel M., Drolet M. Topoisomerases I and III inhibit R-loop formation to prevent unregulated replication in the chromosomal Ter region of Escherichia coli // PLoS Genet. 2018. V. 14. Art. e1007668. https://doi.org/10.1371/journal.pgen.1007668
  4. Drolet M., Phoenix P., Menzel R., Masse E., Liu L. F., Crouch R. J. Overexpression of RNase H partially complements the growth defect of an Escherichia coli ΔtopA mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I // Proc. Natl. Acad. Sci. USA. 1995. V. 92. P. 3526‒3530. https://doi.org/10.1073/pnas.92.8.3526
  5. Ewels P., Magnusson M., Lundin S., Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report // Bioinformatics. 2016. V. 32. P. 3047‒3048. https://doi.org/10.1093/bioinformatics/btw354
  6. Gan W., Guan Z., Liu J., Gui T., Shen K., Manley J. L., Li X. R-loop-mediated genomic instability is caused by impairment of replication fork progression // Genes Dev. 2011. V. 25. P. 2041–2056. https://doi.org/10.1101/gad.17010011
  7. Garcia-Muse T., Aguilera A. R loops: from physiological to pathological roles // Cell. 2019. V. 179. P. 604–618. https://doi.org/10.1016/j.cell.2019.08.055
  8. Ginno P. A., Lott P. L., Christensen H. C., Korf I., Chédin F. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters // Mol. Cell. 2012. V. 45. P. 814–825. https://doi.org/10.1016/j.molcel.2012.01.017
  9. Holt I. J. R-loops and mitochondrial DNA metabolism // Methods Mol. Biol. 2022. V. 2022:2528. P. 173‒202. https://doi.org/10.1007/978-1-0716-2477-7_12
  10. Huertas P., Aguilera A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination // Mol. Cell. 2003. V. 12. P. 711‒721. https://doi.org/10.1016/j.molcel.2003.08.010
  11. Jenuth J. P. The NCBI. Publicly available tools and resources on the web // Bioinformatics methods and protocols. Methods in Molecular Biology™ / Eds. Misener S., Krawetz S. A. V. 132. Totowa, NJ: Humana Press, 1999. P. 301‒312. https://doi.org/10.1385/1-59259-192-2:301
  12. Jordan S. W., Cronan J. E., Jr. The Escherichia coli lipB gene encodes lipoyl (octanoyl)-acyl carrier protein: protein transferase // J. Bacteriol. 2003. V. 185. P. 1582–1589. https://doi.org/10.1128/JB.185.5.1582-1589.2003
  13. Kim S., Kim Y., Yoon S. Y. Overexpression of YbeD in Escherichia coli enhances thermotolerance // J. Microbiol. Biotechnol. 2019. V. 29. P. 401‒409. https://doi.org/10.4014/jmb.1901.01036
  14. Kozlov G., Elias D., Semesi A., Yee A., Cygler M., Gehring K. Structural similarity of YbeD protein from Escherichia coli to allosteric regulatory domains // J. Bacteriol. 2004. V. 186. P. 8083–8088. https://doi.org/10.1128/jb.186.23.8083-8088.2004
  15. Leela J. K., Raghunathan N., Gowrishankar J. Topoisomerase I essentiality, DnaA-independent chromosomal replication, and transcription-replication conflict in Escherichia coli // J. Bacteriol. 2021. V. 203. Art. e0019521. https://doi.org/10.1128/jb.00195-21
  16. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The Sequence Alignment/Map format and SAMtools // Bioinformatics. 2009. V. 25 P. 2078‒2079. https://doi.org/10.1093/bioinformatics/btp352
  17. Li R., Liu B., Yuan X., Chen Z. A bibliometric analysis of research on R-loop: landscapes, highlights and trending topics // DNA Repair (Amst). 2023. V. 127. Art. 103502. https://doi.org/10.1016/j.dnarep.2023.103502
  18. Raghunathan N., Kapshikar R. M., Leela J. K., Mallikarjun J., Bouloc P., Gowrishankar J. Genome-wide relationship between R-loop formation and antisense transcription in Escherichia coli // Nucleic Acids Res. 2018. V. 46. P. 3400–3411. https://doi.org/10.1093/nar/gky118
  19. Ramírez F., Dündar F., Diehl S., Grüning B.A., Manke T. deepTools: a flexible platform for exploring deep-sequencing data // Nucleic Acids Res. 2014. V. 42 (W1). P. W187‒W191. https://doi.org/10.1093/nar/gku365
  20. Renaudin X., Venkitaraman A. R. A mitochondrial response to oxidative stress mediated by unscheduled RNA‒DNA hybrids (R-loops) // Mol. Cell. Oncol. 2021. V. 8. Art. 2007028. https://doi.org/10.1080/23723556.2021.2007028
  21. Sanz L. A., Hartono S. R., Lim Y. W., Steyaert S., Rajpurkar A., Ginno P. A., Xu X., Chédin F. Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals // Mol. Cell. 2016. V. 63. P. 167‒178. https://doi.org/10.1016/j.molcel.2016.05.032
  22. Skourti-Stathaki K., Proudfoot N. J., Gromak N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination // Mol Cell. 2011. V. 42. P. 794‒805. https://doi.org/10.1016/j.molcel.2011.04.026
  23. Thomas M., White R. L., Davis R. W. Hybridization of RNA to double-stranded DNA: formation of R-loops // Proc. Natl. Acad. Sci. USA. 1976. V. 73. P. 2294‒2298. https://doi.org/10.1073/pnas.73.7.2294
  24. Tripathi D., Oldenburg D. J., Bendich A. J. Ribonucleotide and R-loop damage in plastid DNA and mitochondrial DNA during maize development // Plants (Basel). 2023. V. 12. Art. 3161. https://doi.org/10.3390/plants12173161
  25. Xu W., Xu H., Li K., Fan Y., Liu Y., Yang X., Sun Q. The R-loop is a common chromatin feature of the Arabidopsis genome // Nature Plants. 2017. V. 3. P. 704‒714. https://doi.org/10.1038/s41477-017-0004-x
  26. Yu G., Wang L. G., He Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization // Bioinformatics. 2015. V. 31. P. 2382‒2383. https://doi.org/10.1093/bioinformatics/btv145
  27. Zeller P., Padeken J., van Schendel R., Kalck V., Tijsterman M., Gasser S. M. Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability // Nature Genet. 2016. V. 48. P. 1385‒1395. https://doi.org/10.1038/ng.3672
  28. Zhang Y., Liu T., Meyer C. A., Eeckhoute J., Johnson D. S., Bernstein B. E., Liu X. S. Model-based analysis of ChIP-Seq (MACS) // Genome Biol. 2008. V. 9. Art. R137. P. 1‒9. https://doi.org/10.1186/gb-2008-9-9-r137

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. a – Diagram demonstrating the distribution of consensus peaks for S9.6 samples by genomic components; b – profile plot showing the saturation of DRIP-seq reads by genomic regions containing genes. In this case, genes were defined as genomic regions including 300 nucleotides (promoter region) before the transcription start signal (TSS), the gene body and 300 nucleotides after the transcription termination signal (TTS), (u – saturation units); c – shows the distribution of DRIP read densities for a representative region of the bacterial genome with coordinates: 660000‒665000, which well reflects the signals for all samples of the experiment.

Download (228KB)

Copyright (c) 2025 Russian Academy of Sciences