A survey and outline taxonomy of the Phragmidium mucronatum (Pucciniales) and related species inhabiting roses in the European part of Russia

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article presents the results of a detailed survey of cultivated roses growing in the European territory of Russia for their infestation by fungi of the genus Phragmidium causing rose rust disease. The main study area was the rose garden of the Peter the Great Botanical Garden of BIN RAS (St. Petersburg). A total of five wild species and 43 varieties of roses from seven garden groups were studied. As a result of morphological analysis of affected plant parts, detailed microscopy (using light and scanning electron microscopes) of collected fungal specimens and analysis of DNA data, four species of the genus (Phragmidium mucronatum, P. fusiforme, P. tuberculatum, and P. rosae- pimpinellifoliae) were identified. Interestingly, all identified species appeared to belong to the group of morphologically similar species from the P. mucronatum complex. During the study, the nucleotide sequences of ITS for P. fusiforme, P. mucronatum, and P. rosae- pimpinellifoliae and LSU for P. rosae-pimpinellifoliae, previously missing from databases, were obtained for the first time. Refined morphological descriptions and illustrations of macro- and microstructures are provided for all Phragmidium species studied. To compare the studied species with other representatives of the genus and to determine their phylogenetic position, phylogenetic analysis based on ITS and LSU sequences was performed.

Texto integral

Acesso é fechado

Sobre autores

V. Malysheva

Komarov Botanical Institute of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: v_malysheva@binran.ru
Rússia, 197022, St. Petersburg

V. Dudka

Komarov Botanical Institute of the Russian Academy of Sciences

Email: vdudka@binran.ru
Rússia, 197022, St. Petersburg

E. Malysheva

Komarov Botanical Institute of the Russian Academy of Sciences

Email: e_malysheva@binran.ru
Rússia, 197022, St. Petersburg

A. Kapelyan

Komarov Botanical Institute of the Russian Academy of Sciences

Email: akapelyan@binran.ru
Rússia, 197022, St. Petersburg

Bibliografia

  1. Adritskaya N.A., Kapelyan A.I. Assessment of modern garden rose cultivars in the rosarium of Peter the Great Botanical Garden. Contemporary horticulture. 2023. No. 4. P. 145– 155. (In Russ.). https://doi.org/10.52415/23126701_2023_0414
  2. Aime M.C. Toward resolving family-level relationships in rust fungi (Uredinales). Mycoscience. 2006. V. 47(3). P. 112–122. https://doi.org/10.1007/S10267-006-0281-0
  3. Aime M.C., Bell C.D., Wilson A.W. Deconstructing the evolutionary complexity between rust fungi (Pucciniales) and their plant hosts. Studies in Mycology. 2018. V. 89. P. 143– 152. https://doi.org/10.1016/j.simyco.2018.02.002
  4. Alaei H., De Backer M., Nuytinck J. et al. Phylogenetic relationships of Puccinia horiana and other rust pathogens of Chrysanthemum × morifolium based on rDNA ITS sequence analysis. Mycol. Res. 2009. V. 113. P. 668–683. https://doi.org/10.1016/j.mycres.2009.02.003
  5. Alfaro M.E., Zoller S., Lutzoni F. Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol. Biol. Evol. 2003. V. 20. P. 255–266. https://doi.org/10.1093/molbev/msg028
  6. Azbukina Z.M. The rust fungi. (Lover plants, fungi and mosses of the Russian Far East. Fungi; V. 5). Vladivostok, Dalnauka, 2005. (In Russ.)
  7. Barilli E., Satovic Z., Sillero J.C. et al. Phylogenetic analysis of Uromyces species infecting grain and forage legumes by sequence analysis of nuclear ribosomal internal transcribed spacer region. J. Phytopathol. 2010. V. 159: 137– 145. https://doi.org/10.1111/j.1439-0434.2010.01736.x
  8. Beenken L., Zoller S., Berndt R. Rust fungi on Annonaceae II: The genus Dasyspora Berk. et M.A. Curtis. Mycologia. 2012. V. 104 (3). P. 659–681. https://doi.org/10.3852/11-068
  9. Brandenburger W. Vademecum zum Sammeln parasitischer Pilze: mit besonderer Berücksichtigung der in Mitteleuropa vorkommenden Uredinales, Ustilaginales, Erysiphales, Taphrinales und Peronosporales. Stuttgart, Ulmer, 1963.
  10. Cummins G., Hiratsuka Y. Illustrated genera of rust fungi, 3rd edn. American Phytopathological Society Press, St. Paul, Minnesota, 2003.
  11. Dietel P. Über die Arten der Gattung Phragmidium. Hedwigia. 1905. V. 44. P. 330–346.
  12. Floate K.D., Whitham T.G. The hybrid bridge hypothesis – host shifting via plant hybrid swarms. American Naturalist. 1993. V. 141. P. 651–662.
  13. Gäumann E. Die Rostpilze Mitteleuropas mit besonderer Berücksichtigung der Schweiz. Büchler, Bern, 1959.
  14. Hillis D.M., Bull J.J. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 1993. V. 42. P. 182–192. https://doi.org/10.1093/sysbio/42.2.182
  15. Kasai M. On the Japanese species of Phragmidium. Trans. Sapporo Nat. Hist. Soc. 1910. V. 3. P. 25–51.
  16. Katoh K., Rozewicki J., Yamada K.D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinformatics. 2019. V. 20 (4). P. 1160–1166. https://doi.org/10.1093/bib/bbx108
  17. Kuprevitch V.F., Ulyanishchev V.I. Keybook to the rust fungi of the USSR. Minsk, Nauka i tekhnika, 1975. (In Russ.)
  18. Letunic I., Bork P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019. V. 47. P. W256–W259. https://doi.org/10.1093/nar/gkz239
  19. Liu Y., Cao B., Tao S. et al. Phragmidium species parasitizing species of Rosaceae in Tibet, China, with descriptions of three new species. Mycol. Progr. 2018. V. 17. P. 967–988. https://doi.org/10.1007/s11557-018-1406-5
  20. Liu Y., Ono Y., Kakishima M. et al. Taxonomy and phylogenetic position of Phragmidium altaicum, a newly described rust fungus on Rosa, based on molecular and morphological data. Phytotaxa. 2019. V. 423 (3). P. 187–194. https://doi.org/10.11646/phytotaxa.423.3.7
  21. Liu Y., Liang Y.M., Ono Y. Taxonomic revision of species of Kuehneola and Phragmidium on Rosa, including two new species from China. Mycologia. 2020. V. 112 (4). P. 742–752. https://doi.org/10.1080/00275514.2020.1753426
  22. Maier W., Begerow D., Weiß M. et al. Phylogeny of the rust fungi: an approach using nuclear large subunit ribosomal DNA sequences. Can. J. Botany. 2003. V. 81 (1). P. 12–23. https://doi.org/10.1139/b02–113
  23. Mokritskaya M.S. Rose rust and its control measures in the conditions of the Leningrad region. Proc. Inst. Appl. Zool. Phytopathol. 1958. V. 5. P. 67–87. (In Russ.)
  24. Mokritskaya M.S. Methodical instruction on determination of rust species of the genus Phragmidium Link on Rosa L. 1974. Leningrad, VIR. (In Russ.)
  25. Ono Y. Phragmidium satoanum, a new rust pathogen of Rosa hirtula in Japan. Mycoscience. 2019. V. 60. P. 237–246. https://doi.org/10.1016/j.myc.2019.05.001
  26. Rambaut A., Drummond A.J., Xie D. et al. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018. V. 67. P. 901–904. https://doi.org/10.1093/sysbio/syy032
  27. Ritz Ch.M., Maier W.F.A., Oberwinkler F. et al. Different evolutionary histories of two Phragmidium species infecting the same dog rose hosts. Mycol. Res. 2005. V. 109 (5). P. 603–609. https://doi.org/10.1017/S0953756205002844
  28. Ronquist F., Teslenko M., van der Mark P. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012. V. 61. P. 539–542. https://doi.org/10.1093/sysbio/sys029
  29. Shattock R. Phragmidium rubi-idaei (DC.) P. Karsten. In: I.M. Smith, J. Dunez, R.A. Lelliot, D.H. Phillips, A.S. Archer (eds). European Handbook of Plant Diseases. New York, Wiley, 1988. P. 483.
  30. Scholler M., Aime M.C. On some rust fungi (Uredinales) collected in an Acacia koa – Metrosideros polymorpha woodland, Mauna Loa Road, Big Island, Hawaii. Mycoscience. 2006. V. 47 (3). P. 159–165. https://doi.org/10.1007/s10267-006-0309-5
  31. Svyazeva O.A. Trees, shrubs and vines in the Park of the Botanical Garden of the Botanical Institute V.L. Komarov (To the history of the introduction of the culture). St. Petersburg, Rostock, 2005. (In Russ.)
  32. Sun J.-E., Zhang Q., Luo W.-M. et al. Four new Phragmidium (Phragmidiaceae, Pucciniomycetes) species from Rosaceae plants in Guizhou Province of China. MycoKeys. 2022. V. 93. P. 193–213. https://doi.org/10.3897/mycokeys.93.90861
  33. Sydow H. Verwandtschaftsverhältnisse und des gegenwärtigen Entwicklungs-anges zur Umgrenzung der Gattungen bei den Uredineen. Mycology. 1921. V. 19. P. 161–175.
  34. Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. and Evol. 2021. V. 38. P. 3022–3027. https://doi.org/10.1093/molbev/msab120
  35. Tkachenko K., Kapelian A. The history of the introduction of species of the genus Rosa to St. Petersburg, Russia. In: A. Muratov, S. Ignateva (eds.). Fundamental and applied scientific research in the development of agriculture in the Far East (AFE-2021). AFE2021. Lecture Notes in Networks and Systems (LNNS). Cham, Springer, 2022. Vol. 353. P. 581–588. https://doi.org/10.1007/978-3-030-91402-8_65
  36. Trifinopoulos J., Nguyen L.-T., von Haeseler A. et al. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016. V. 44. P. W232–W235. https://doi.org/10.1093/nar/gkw256
  37. Vilgalys R., Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriology. 1990. V. 172 (8). P. 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  38. Wahyuno D., Kakishima M., Ono Y. Morphological analyses of urediniospores and teliospores in seven Phragmidium species parasitic on ornamental roses. Mycoscience. 2001. V. 42. P. 519–533. https://doi.org/10.1007/BF02460950
  39. Wei S.X. A taxonomic study of the genus Phragmidium of China. Mycosystema. 1988. V. 1. P. 179–210.
  40. Wenzl H. Knospengallen durch Rosenrost. Zeitschrift für Pflanzenkrankheiten (Pflanzenpathologie) und Pflanzenschutz. 1936. V. 46 (3/4). P. 204–214.
  41. Williams P.H. Investigations on the rust of roses, Phragmidium mucronatum Fr. Ann. App. Biol. 1938. V. 25. P. 730–741.
  42. Wingfield B.D., Ericson L., Szaro T. et al. Phylogenetic patterns in the Uredinales. Australasian Plant Pathol. 2004. V. 33 (3). P. 327–335. https://doi.org/10.1071/AP04020
  43. Yun H.Y., Minnis A.M., Kim Y.H. et al. The rust genus Frommeëlla revisited: a later synonym of Phragmidium after all. Mycologia. 2011. V. 103 (6). P. 1451–1463. https://doi.org/10.3852/11-120
  44. Zhao P., Zhang Z.F., Hu D.M. et al. Contribution to rust flora in China I, tremendous diversity from natural reserves and parks. Fungal Diversity. 2021. V. 5 (1). P. 1–58. https://doi.org/10.1007/s13225-021-00482-w
  45. Адрицкая Н.А., Капелян А.И. (Adritskaya, Kapelyan) Оценка современных сортов садовых роз в розарии Ботанического сада Петра Великого // Современное садоводство. 2023. № 4. С. 145–155. https://doi.org/10.52415/23126701_2023_0414
  46. Азбукина З.М. (Azbukina) Ржавчинные грибы. (Низшие растения, грибы и мохообразные Дальнего Востока России. Грибы; Т. 5). Владивосток: Дальнаука, 2005. 616 с.
  47. Купревич В.Ф., Ульянищев В.И. (Kuprevitch, Ulyanishchev) Определитель ржавчинных грибов СССР. Минск: Наука и техника, 1975. 336 с.
  48. Мокрицкая М.С. (Mokritskaya) Ржавчина роз и меры борьбы с ней в условиях Ленинградской области // Сб. работ ин-та прикладной зоологии и фитопатологии. 1958. Вып. 5. С. 67–87.
  49. Мокрицкая М.С. (Mokritskaya) Методическое указание по определению видов ржавчины из рода Phragmidium Link на Rosa L. Ленинград, ВИР, 1974. 69 с.
  50. Связева О.А. (Svyazeva) Деревья, кустарники и лианы парка Ботанического сада Ботанического института им. В.Л. Комарова (К истории введения в культуру). СПб., Росток, 2005. 384 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Phylogenetic tree of Phragmidium species inhabiting roses derived from the ITS + LSU dataset using ML analysis. The ML bootstrap/Bayesian PP supports are shown above branches. For all taxa the GenBank accession numbers (ITS/LSU) and vouchers are presented. The specimens studied for this article are highlighted in bold. Scale bar indicates the mean number of nucleotide substitutions per site.

Baixar (572KB)
3. Fig. 2. Morphological structures of Phragmidium fusiforme (LE F-347559, LE F-347560): a – infected leaf (scale bar = 1 cm); b – telia and uredinia on leaf surface (scale bar = 500 μm); c – telium under SEM; d – uredinia with paraphyses under SEM; e – urediniospores under SEM; f – urediniospores under LM (scale bar = 20 μm); g – teliospores under LM (scale bar = 20 μm); h, i – teliospore under SEM.

Baixar (1MB)
4. Fig. 3. Morphological structures of Phragmidium mucronatum (LE F-347567): a – infected leaf (scale bar = 1 cm); b – aecium on fruit (scale bar = 0.5 cm); c – telia and uredinia on leaf surface (scale bar = 500 μm); d – urediniospores under LM (scale bar = 20 μm); e – telia under SEM; f – aeciospores under SEM; g – aeciospores under LM (scale bar = 20 μm); h – teliospores under LM (scale bar = 20 μm); i – teliospore under SEM.

Baixar (1MB)
5. Fig. 4. Morphological structures of Phragmidium rosae-pimpinellifoliae (LE F-347564): a – infected leaf and aecium on fruit (scale bar = 1 cm); b – telia and uredinia on leaf surface (scale bar = 500 μm and 100 μm in sector); c – telium under SEM; d – teliospores under LM (scale bar = 20 μm); e, f – teliospores under SEM; g – uredinia under SEM; h, i – urediniospores under SEM; j – urediniospores under LM (scale bar = 10 μm); k – aeciospores under LM (scale bar = 20 μm); l, m – aeciospores under SEM.

Baixar (1MB)
6. Fig. 5. Morphological structures of Phragmidium tuberculatum (LE F-347565): a – infected leaf (scale bar = 1 cm); b – telia and uredinia on leaf surface (scale bar = 200 μm); c – telia under SEM; d – uredinia under SEM; e – teliospores under LM (scale bar = 10 μm); f – teliospore under SEM; g – urediniospores under LM (scale bar = 10 μm); h, i – urediniospores under SEM.

Baixar (770KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024