The effects of submicron particles of metal oxides on the production of hydrogen peroxide and the activity of oxidative enzymes of Aspergillus niger and Penicillium chrysogenum

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The submicron particles effect of heavy metal oxides WO3, CsTeMoO6 и RbTe1.5W0.5O6 with photocatalytic activity on the content of hydrogen peroxide and the activity of extracellular oxidoreductases (catalase, peroxidase) in the cultivation medium of the Aspergillus niger and Penicillium chrysogenum fungi was studied. Addition of the studied compounds to the cultivation medium reduced the H2O2 content for both fungi. An ambiguous effect of the studied compounds on the activity of extracellular catalase and peroxidase was noted. In most cases, these compounds caused an increase in the activity of the studied enzymes both under light and in the dark. A significant decrease in activity was shown only for exocatalases of both fungi under the influence of WO3 and under the influence of CsTeMoO6 in P. chrysogenum.

Full Text

Restricted Access

About the authors

N. А. Anikina

Lobachevsky Nizhegorod State University

Author for correspondence.
Email: undinaf@gmail.com
Russian Federation, Nizhny Novgorod

R. V. Baryshkov

Lobachevsky Nizhegorod State University

Email: romanbariskov1000@mail.ru
Russian Federation, Nizhny Novgorod

A. Yu. Shishkin

Lobachevsky Nizhegorod State University

Email: uandshi@yandex.ru
Russian Federation, Nizhny Novgorod

O. N. Smirnova

Lobachevsky Nizhegorod State University

Email: protectfun@mail.ru
Russian Federation, Nizhny Novgorod

V. F. Smirnov

Lobachevsky Nizhegorod State University

Email: biodeg@mail.ru
Russian Federation, Nizhny Novgorod

References

  1. Andrés C.M.C., Pérez de la Lastra J.M., Juan C.A. et al. Chemistry of hydrogen peroxide formation and elimination in mammalian cells, and its role in various pathologies. Stresses. 2022. V. 2. P. 256—274. https://doi.org/10.3390/stresses2030019
  2. Bhanvase B.A., Shende T.P., Sonawane S.H. A review on grapheme-TiO2 and doped grapheme-TiO2 nanocomposite photocatalyst for water and wastewater treatment. Environmental Technol. Reviews. 2017. V. 6. P. 1—14. https://doi.org/10.1080/21622515.2016.1264489
  3. Daou M., Faulds C.B. Glyoxal oxidases: their nature and properties. World J. Microbiol. Biotechnol. 2017. V. 33 (5). P. 87. https://doi.org/10.1007/s11274-017-2254-1
  4. Dawson P., Eliot W., John K. Reference biochemist. Mir, Moscow, 1991. (In Russ.)
  5. Dzambi I., Mangoyi R. The effects of Psidium guajava leaf extract on the production of cellulases and glucose oxidases by Aspergillus niger. GSC Advanced Res. Revs. 2020. V. 5. P. 118—122. https://doi.org/10.30574/gscarr.2020.5.2.0109
  6. Fukina D.G., Koryagin A.V., Koroleva A.V. et al. Photocatalytic properties of β-pyrochlore RbTe1.5W0.5O6 under visible-light irradiation. J. Solid State Chem. 2021. V. 300. P. 122235. https://doi.org/10.1016/j.jssc.2021.122235
  7. Fukina D.G., Koryagin A.V., Koroleva A.V. et al. The role of surface and electronic structure features of the CsTeMoO6 β-pyrochlore compound during the photooxidation dyes process. J. Solid State Chem. 2022a. V. 308. Art. 122235. https://doi.org/10.1016/j.jssc.2022.122939
  8. Fukina D.G., Koryagin A.V., Volkova N.S. et al. Features of the electronic structure and photocatalytic properties under visible light irradiation for RbTe1.5W0.5O6 with β-pyrochlore structure. Solid State Sci. V. 126. 2022b. Art. 106858. https://doi.org/10.1016/j.solidstatesciences.2022.106858
  9. Gay C., Gebicki J.M. A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay. Anal Biochem. 2000. V. 284 (2). P. 217—220. https://doi.org/10.1006/abio.2000.4696. PMID: 10964403
  10. Gunatillake P.A., Dandeniyage L.S., Adhikari R. et al. Advancements in the development of biostable polyurethanes. Polymer Revs. 2018. V. 59. P. 391—417. https://doi.org/10.1080/15583724.2018.1493694
  11. He L., Liu Y., Mustapha A. et al. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 2011. V. 166 (3). P. 207—215. http://dx.doi.org/10.1016/j.micres.2010.03.003
  12. Hernández-Ortega A., Ferreira P., Martínez A.T. Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl. Microbiol. Biotechnol. 2012. V. 93. P. 1395—1410. https://doi.org/10.1007/s00253-011-3836-8
  13. Ivanushkina N., Aleksanyan K., Rogovina S. et al. The use of mycelial fungi to test the fungal resistance of polymeric materials. Microorganisms. 2023. V. 11 (2). P. 251. https://doi.org/10.3390/microorganisms11020251
  14. Kathirvelu S., D’Souza L., Dhurai B. UV protection finishing of textiles using ZnO nanoparticles. Indian Journal of Fibre and Textile Research. 2009. V. 34. P. 267—273.
  15. Kobzar A.I. Applied mathematical statistics. Fizmatlit, Moscow, 2006. (In Russ.)
  16. Kutawa A.B., Ahmad K., Ali A. et al. Trends in nanotechnology and its potentialities to control plant pathogenic fungi: a review. Biology. 2021. V. 10 (9). Art. 881.https://doi.org/10.3390/biology10090881
  17. Li Y., Schellhorn H.E. Rapid kinetic microassay for catalase activity. J. Biomol.Tech. 2007. V. 18. P. 185—187.
  18. Liu Y., Huang J., Feng X. et al. Thermal-sprayed photocatalytic coatings for biocidal applications: a review. J. Therm. Spray Tech. 2021. N 30. P. 1—24. https://doi.org/10.1007/s11666-020-01118-2
  19. Makarov I.O., Klyuev D.A., Smirnov V.F. et al. Effect of low-frequency pulsed magnetic field and low-level laser radiation on oxidoreductase activity and growth of fungi — active destructors of polymer materials. Microbiology. 2019. P. 72—78. https://doi.org/ 10.1134/s0026261719010053
  20. Marin-Flores C.A., Rodríguez-Nava O., García-Hernández M. et al. Free-radical scavenging activity properties of ZnO sub-micron particles: size effect and kinetics. J. Materials Research and Technol. 2021. V. 13. P. 1665—1675. https://doi.org/10.1016/j.jmrt.2021.05.050
  21. Marinho H.S., Real C., Cyrne L. et al. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2014. V. 2. P. 535—562. https://doi.org/10.1016/j.redox.2014.02.006
  22. Martínez-Ruiz A., Tovar-Castro L., Aguilar C. et al. Sucrose hydrolysis in a continuous packed-bed reactor with auto-immobilise Aspergillus niger biocatalyst obtained by solid-state fermentation. Appl. Biochem. Biotechnol. 2022. V. 194. P. 1327—1329. https://doi.org/10.1007/s12010-021-03737-z
  23. Meleshko A.A., Afinogenova A.G., Afinogenov G.E. et al. Аntibacterial inorganic agents: efficiency of using multicomponent systems. Infektsiya i immunitet. 2020. V. 10 (4). P. 639—654. (In Russ.) http://dx.doi.org/10.15789/2220-7619-AIA-1512
  24. Nagaraja P., Shivakumar A., Shrestha A.K. Development and evaluation of kinetic spectrophotometric assays for horseradish peroxidase by catalytic coupling of paraphenylenediamine and mequinol. Anal. Sci. 2009. V. 25. P. 1243—1248. https://doi.org/10.2116/analsci.25.1243
  25. Nevezhina A.V., Fadeeva T.V. Prospects for the creation of antimicrobial preparations based on copper and copper oxides nanoparticles. Acta Biomedica Scientifica. 2021. V. 6. P. 37—50. (In Russ.) https://doi.org/10.29413/ABS.2021-6.6-2.5
  26. Riduan S.N., Zhang Y. Recent advances of zinc-based antimicrobial materials. Chem. Asian J. 2021. V.16 (18). P. 2588—2595. https://doi.org/10.1002/asia.202100656
  27. Sirelkhatim A., Mahmud S., Seeni A. et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015. V. 7. P. 219—242.https://doi.org/10.1007/s40820-015-0040-x
  28. Smirnov V.F., Glagoleva A.A., Mochalova A.E. et al. The influence of factors of a biological and physical nature on the biodegradation and physicochemical properties of composites based on polyvinyl chloride and natural polymers. Int. Polymer Sci. Technol. 2018. N 45. V. 6. P. 283—288. https://doi.org/10.1177/0307174X1804500608
  29. Smirnov V.F., Smirnova O.N., Shishkin A.Y. et al. Effect of light on the antifungal activity of submicron particles based on tungsten oxide. Nanotechnol. Russia. 2022. V. 17. P. 444—456. https://doi.org/10.1134/S263516762203017X
  30. Thabet S., Simonet F., Lemaire M. et al. Impact of photocatalysis on fungal cells: depiction of cellular and molecular effects on Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2014. V. 80 (24). P. 7527—7535. https://doi.org/10.1128/AEM.02416-14
  31. Valenzuela L., Iglesias-Juez A., Bachiller-Baeza B. et al. Biocide mechanism of highly efficient and stable antimicrobial surfaces based on zinc oxide-reduced graphene oxide photocatalytic coatings. J. Mater. Chem. B. 2020. V. 8. P. 8294—8304. https://doi.org/10.1039/D0TB01428A
  32. Veignie E., Rafin C., Woisel P. et al. Preliminary evidence of the role of hydrogen peroxide in the degradation of benzo[a]pyrene by a non-white rot fungus Fusarium solani. Environ. Pollut. 2004. V. 129 (1). P. 1—4. https://doi.org/10.1016/j.envpol.2003.11.007
  33. Veltri S., Palermo A.N., De Filpo G. et al. Subsurface treatment of TiO2 nanoparticles for limestone: prolonged surface photocatalytic biocidal activities. Building and Environment. 2019. V. 149. P. 655—661. https://doi.org/10.1016/j.buildenv.2018.10.038
  34. Vilchis-Landeros M.M., Matuz-Mares D., Vázquez-Meza H. Regulation of metabolic processes by hydrogen peroxide generated by NADPH oxidases. Processes. 2020. V. 8 (11). P. 1424. https://doi.org/10.3390/pr8111424
  35. Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 2001. V. 3 (7). P. 643—646. https://doi.org/10.1016/S1466-6049(01)00197-0
  36. Zakharova O.V., Gusev A.A. Photocatalytically active zinc oxide and titanium dioxide nanoparticles in clonal micropropagation of plants: prospects. Nanotechnologies in Russia. 2019. V. 14. P. 311—324. https://doi.org/10.1134/S1995078019040141
  37. Zhang J., Miao Y., Rahimi M.J. et al. Guttation capsules containing hydrogen peroxide: an evolutionarily conserved NADPH oxidase gains a role in wars between related fungi. Environ. microbiol. 2019. V. 21 (8). P. 2644—2658. https://doi.org/10.1111/1462-2920.14575
  38. Досон Р., Эллиот Д., Джонс К. (Dawson et al.) Справочник биохимика. М.: Мир, 1991. 464 с.
  39. Кобзарь А.И. (Kobzar) Прикладная математическая статистика. М.: Физматлит, 2006. 816 с.
  40. Мелешко А.А., Афиногенова А.Г., Афиногенов Г.Е. и др. (Meleshko et al.) Антибактериальные неорганические агенты: эффективность использования многокомпонентных систем // Инфекция и иммунитет. 2020. Т. 10. № 4. С. 639—654.
  41. Невежина А.В., Фадеева Т.В. (Nevezina, Fadeeva) Перспективы создания антимикробных препаратов на основе наночастиц меди и оксидов меди // Acta Biomedica Scientifica. 2021. Т. 6. С. 37—50.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The content of hydroperoxides in the cultivation medium of Aspergillus niger (K) and when submicron particles of metal oxides WO3 (1), RbTe1.5W0.5O6 (2), CsTeMoO6 (3) are added to it under conditions of exposure to light (C) and in darkness (T).

Download (71KB)
3. Fig. 2. The content of hydroperoxides in the cultivation medium of Penicillium chrysogenum (K) and when submicron particles of metal oxides WO3 (1), RbTe1.5W0.5O6 (2), CsTeMoO6 (3) are added to it under conditions of exposure to light (C) and in darkness (T).

Download (74KB)
4. Fig. 3. Activity of extracellular catalase in the culture liquid of Aspergillus niger (K) and when submicron particles of metal oxides WO3 (1), RbTe1.5W0.5O6 (2), CsTeMoO6 (3) are added to it under conditions of exposure to light (C) and under conditions darkness (T).

Download (88KB)
5. Fig. 4. Activity of extracellular catalase in the culture liquid of Penicillium chrysogenum (K) and when submicron particles of metal oxides WO3 (1), RbTe1.5W0.5O6 (2), CsTeMoO6 (3) are added to it under conditions of exposure to light (C) and under conditions darkness (T).

Download (68KB)
6. Fig. 5. Activity of extracellular peroxidase in the culture liquid of Aspergillus niger (K) and when submicron particles of metal oxides WO3 (1), RbTe1.5W0.5O6 (2), CsTeMoO6 (3) are added to it under conditions of exposure to light (C) and under conditions darkness (T).

Download (67KB)
7. Fig. 6. Activity of extracellular peroxidase in the culture liquid of Penicillium chrysogenum (K) and when submicron particles of metal oxides WO3 (1), RbTe1.5W0.5O6 (2), CsTeMoO6 (3) are added to it under conditions of exposure to light (C) and under conditions darkness (T).

Download (76KB)

Copyright (c) 2024 Russian Academy of Sciences