Yeasts of the Georgian honeysuckle (Lonicera iberica) and grapes (Vitis vinifera) in Dagestan
- Authors: Abdullabekova D.A.1, Magomedova E.S.1, Magomedov G.G.1, Kachalkin A.V.2,3
-
Affiliations:
- Precaspian Institute of Biological Resources of the Dagestan Federal Research Centre of the Russian Academy of Sciences
- M.V. Lomonosov Moscow State University
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, PSCBR RAS
- Issue: Vol 58, No 2 (2024)
- Pages: 108-116
- Section: БИОРАЗНООБРАЗИЕ, СИСТЕМАТИКА, ЭКОЛОГИЯ
- URL: https://rjraap.com/0026-3648/article/view/655953
- DOI: https://doi.org/10.31857/S0026364824020029
- EDN: https://elibrary.ru/vpigym
- ID: 655953
Cite item
Abstract
Ecological and taxonomic study of mycobiota of cultivated plants and native flora, including endemic ones, from phylogenetic systematics’ perspective, remains one of the interesting topics of microbial ecology. The structure of yeast communities of endemic to the Caucasus Georgian honeysuckle in comparison with grapes, a traditional agricultural crop of the republic, has been studied in the territory of Dagestan. The yeast complex of grapes was studied in ampelocoenoses located on the plain and in the foothills, and in shrubs of Georgian honeysuckle also on the plain and in the mountains. The number of yeasts (per unit of weight) on the plants is higher than in soils, with the highest number of yeasts found on leaves. Grape and honeysuckle berries’ surfaces contain more yeasts than leaves. The influence of grape cultivars on the species diversity and abundance of yeasts was observed, as well as a tendency for their abundance to decrease with increasing altitude. On the contrary, Georgian honeysuckle growing in the mountains and the soil under it was colonized by yeasts more than on the plain. Its species structure included five species, two of which — Aureobasidium pullulans and Metschnikowia pulcherrima — are also typical for ampelocoenosis. Yeast population of plant endemic on the plain was notable for specificity, one of two isolated species was found and identified for the first time as a new species of the genus Zygotorulaspora — Z. dagestanica, associated with leaves and soil, where they dominate being 79.2% of the total yeast number. Despite the close climatic conditions of sites with wild plants and grapes in the plain, their taxonomic composition differed significantly and included two and nine species, respectively. The results obtained show the perspective of studying yeast communities of endemic plants.
Keywords
Full Text

About the authors
D. A. Abdullabekova
Precaspian Institute of Biological Resources of the Dagestan Federal Research Centre of the Russian Academy of Sciences
Author for correspondence.
Email: dina2407@mail.ru
Russian Federation, Makhachkala
E. S. Magomedova
Precaspian Institute of Biological Resources of the Dagestan Federal Research Centre of the Russian Academy of Sciences
Email: pibrdncran@mail.ru
Russian Federation, Makhachkala
G. G. Magomedov
Precaspian Institute of Biological Resources of the Dagestan Federal Research Centre of the Russian Academy of Sciences
Email: pibrdncran@mail.ru
Russian Federation, Makhachkala
A. V. Kachalkin
M.V. Lomonosov Moscow State University; Skryabin Institute of Biochemistry and Physiology of Microorganisms, PSCBR RAS
Email: kachalkin_a@mail.ru
Russian Federation, Moscow; Pushchino
References
- Abdullabekova D.A., Magomedova E.S., Aliverdiyeva D.A. et al. Yeast communities of vineyards in Dagestan: ecological, taxonomic, and genetic characteristics. Biology Bulletin. 2020. V. 47 (4). P. 344—351. https://doi.org/10.1134/S1062359020030024
- Abeln F., Hicks R.H., Auta H. et al. Semi-continuous pilot-scale microbial oil production with Metschnikowia pulcherrima on starch hydrolysate. Biotechnology for Biofuels. 2000. V. 13 (127). P. 1—12. https://doi.org/10.1186/s13068-020-01756-2
- Benito S. The impact of Torulaspora delbrueckii yeast in winemaking. Appl. Microbiol. Biotechnol. 2018. V. 102 (1). P. 3081—3094. https://doi.org/10.1007/s00253-018-8849-0
- Breuer U., Harms H. Debaryomyces hansenii — an extremophilic yeast with biotechnological potential. Yeast. 2006. V. 23 (6). P. 415—437. https://doi.org/ 10.1002/yea.1374
- Capriotti A. Torulaspora nilssoni nov. spec. Archiv. Mikrobiol. 1957. V. 28 (3). P. 247—254. https://doi.org/10.1007/BF00411496
- Chernov I. Yu. Yeast in nature. KMK, Moscow, 2013. (in Russ.)
- Contreras A., Curtin C., Varela C. Yeast population dynamics reveal a potential “collaboration” between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation. Appl. Microbiol. Biotechnol. 2015. V. 99 (4). P. 1885—1895. https://doi.org/ 10.1007/s00253-014-6193-6
- Ergün F. Lonicera iberica M. Bieb.: investigation antioxidant activity and bioactive chemicals. Turkish J. Agric. — Food Sci. Technol. 2021. V. 9 (6). Р. 1124—1128. https://doi.org/10.24925/turjaf.v9i6.1124-1128.4372
- Fell J.W., Meyer S.A. Systematics of yeast species in the Candida parapsilosis group. Mycopathol. Mycol. Appl. 1967. V. 32 (3). P. 177—193. https://doi.org/10.1007/BF02049795
- Fonseca Á., Inácio J. Phylloplane yeasts. In: G. Péter, C. Rosa (eds). Biodiversity and ecophysiology of yeasts. The yeast handbook. Springer, Berlin, Heidelberg, 2006, pp. 263—301.
- Freimoser F.M., Rueda-Mejia M.P., Tilocca B. et al. Biocontrol yeasts: mechanisms and applications. World J. Microbiol. Biotechnol. 2019. V. 35 (10). P. 1—19. https://doi.org/10.1007/s11274-019-728-4
- Gaziyev M.A., Musayev A.M., Zalibekov M.D. et al. Prospects for the use of bioresources of some species of dendroflora of Dagestan. Izvestiya DGPU. Estestvennyye i tochnyye nauki. 2008. V. 3 (4). P. 27—32. (In Russ.)
- Glushakova A.M. Ecology of epiphytic yeasts. Cand. Biol. Sci. Thesis, Moscow, 2006. (In Russ.)
- Gunasekera T.S., Paul N.D., Ayres P.G. Responses of phylloplane yeasts to UV-B (290—320 nm) radiation: interspecific differences in sensitivity. Mycol. Res. 1997. V. 101 (7). Р. 779—785. https://doi.org/10.1017/S0953756296003309
- Into P., Khunnamwong P., Jindamoragot S. et al. Yeast associated with rice phylloplane and their contribution to control of rice sheath blight disease. Microorganisms. 2020. V. 8 (3). P. 362. https://doi.org/10.3390/microorganisms8030362
- Kachalkin A.V., Abdullabekova D.A., Magomedova E.S. et al. Yeasts of the vineyards in Dagestan and other regions. Microbiology. 2015. V. 84. (3). Р. 360—368. https://doi.org/10.1134/S002626171503008X
- Kachalkin A.V., Abdullabekova D.A., Magomedova E.S. et al. Zygotorulaspora dagestanica sp. nov., a novel ascomycetous yeast species associated with the Georgian honeysuckle (Lonicera iberica M. Bieb.). Int. J. Syst. Evol. Microbiol. 2021. V. 71 (4). P. e004785. P. 1—6. https://doi.org/10.1099/ijsem.0.004785
- Kanpiengjai A., Kodchasee P., Unban K. et al. Three new yeast species from flowers of Camellia sinensis var. assamica collected in Northern Thailand and their tannin tolerance characterization. Front. Microbiol. 2023. V. 14. e1043430. https://doi.org/ 10.3389/fmicb.2023.1043430
- Kurtzman C.P., Fell J.W. Yeast systematics and phylogeny — implications of molecular identification methods for studies in ecology. In: G. Péter, C. Rosa (eds). Biodiversity and ecophysiology of yeasts. The yeast handbook. Springer, Berlin, Heidelberg, 2006, pp. 11—30.
- Lachance M.A., Bowles J.M., Starmer W.T. Metschnikowia santaceciliae, Candida hawaiiana, and Candida kipukae, three new yeast species associated with insects of tropical morning glory. FEMS Yeast Res. 2003. V. 3. P. 97—103. https://doi.org/10.1111/j.1567-1364.2003.tb00144.x
- Lachance M.A.., Starmer W.T., Phaff H.J. Metschnikowia hawaiiensis sp. nov., a heterothallic haploid yeast from hawaiian morning glory and associated drosophilids. Int. J. Syst. Bacteriol. 1990. V. 40. P. 415—420. https://doi.org / 10.1099/00207713-40-4-415
- Limtong S., Koowadjanakul N. Yeasts from phylloplane and their capability to produce indole-3-acetic acid. World J. Microbiol. Biotechnol. 2012. V. 28 (12). P. 3323—3335. https://doi.org/10.1007/s11274-012-1144-9
- Maksimova I.A., Yurkov A.M., Chernov I. Yu. Spatial structure of epiphytic yeast communities on fruits of Sorbus aucuparia L. 2009. Izvestiya RAN. Ser. Biol. V. 6. Р. 721—727. (In Russ.)
- Nakase T., Suzuki M. Taxonomic studies on Debaryomyces hansenii (Zopf) Lodder et Kreger-van Rij and related species. I. Chemotaxonomic investigations. J. Gen. Appl. Microbiol. 1985. V. 31. P. 49—69. https://doi.org/10.2323/jgam.31.49
- Nguyen N.H., Suh S.O., Blackwell M. Five novel Candida species in insect-associated yeast clades isolated from Neuroptera and other insects. Mycologia. 2007. V. 99 (6). P. 842—858. https://doi.org/10.3852/mycologia.99.6.842
- Nguyen N.H., Suh S.O., Erbil C.K. et al. Metschnikowia noctiluminum sp. nov., Metschnikowia corniflorae sp. nov., and Candida chrysomelidarum sp. nov., isolated from green lacewings and beetles. Mycol. Res. 2006. V. 110 (3). P. 346—356. https://doi.org/10.1016/j.mycres.2005.11.010
- Oro L., Ciani M., Comitini F. Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. J. Appl. Microbiol. 2014. V. 116 (5). P. 1209—1217. https://doi.org/10.1111/jam.12446
- Padgett M., Morrison J.C. Changes in grape berry exudates during fruit development and their effect on mycelial growth of Botrytis cinerea. J. Amer. Soc. Horticultural Sci. 1990. V. 115 (2). P. 269—273. https://doi.org/10.21273/JASHS.115.2.269
- Payzullayeva G.P. Recreational potential of natural areas republic of Dagestan: evaluation and outlook for use. Cand. Geogr. Sci. Thesis. Nalchik, 2012. (In Russ.)
- Piano S., Neyrotti V., Migheli Q. et al. Biocontrol capability of Metschnikowia pulcherrima against Botrytis postharvest rot of apple. Postharvest Biol. Technol. 1997. V. 11 (3). P. 131—140.
- Ribéreau Gayon P., Dubourdieu D., Donèche D. et al. Handbook of Enology, 2nd ed. Wiley, London, 2006.
- Riccombeni A., Vidanes G., Proux-Wéra E. et al. Sequence and аnalysis of the genome of the pathogenic yeast Candida orthopsilosis. PLOS One. 2012. V. 7 (4). e35750. https://doi.org/10.1371/journal.pone.0035750
- Robledo-Leal E., Elizondo-Zertuche M., Villarreal-Treviño L. et al. Killer behavior within the Candida parapsilosis complex. Folia Microbiol. 2014. V. 59 (6). Р. 503—506. https://doi.org/10.1093/10.1007/s12223-014-0327-1
- Santomauro F., Whiffin F.M., Scott R.J. et al. Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnology for Biofuels. 2014. V. 7. Р. 34—43. https://doi.org/10.1186/1754-6834-7-34
- Santos M.C., Golt C., Joerger R.D. et al. Identification of the major yeasts isolated from high moisture corn and corn silages in the United States using genetic and biochemical methods. J. Dairy Science. 2017. V. 100 (2). P. 1151—1160. https://doi.org/10.31 68/jds.2016-11450
- Sun Y., Guo J., Liu F. et al. Identification of indigenous yeast flora isolated from the five winegrape varieties harvested in Xiangning, China. Antonie Van Leeuwenhoek. 2014. V. 105 (3). Р. 533—540. https://doi.org/10.1007/s10482-013-0105-0
- Tavanti A., Davidson A., Gow N. et al. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J. Clin. Microbiol. 2005. V. 43. Р. 284—292. https://doi.org/10.1128/JCM.43.1.284-292.2005
- Terenina Y.E., Chernov I.Y. Taxonomic structure of yeast communities associated with invertebrates. 2001. Mikologiya i fitopatologiya. V. 35 (4). Р. 65—73. (In Russ.)
- Tokuoka K., Ishitani T., Goto S. et al. Identification of yeasts isolated from high-sugar foods. J. General Appl. Microbiol. 1985. V. 31 (5). Р. 411—427.
- Trofa D., Gácser A., Nosanchuk J. Candida parapsilosis, an emerging fungal pathogen. Clinical Microbiology Reviews. 2008. V. 21 (4). Р. 606—625. https://doi.org 10.1128/CMR.00013-08.
- Türkel S., Ener B. Isolation and characterization of new Metschnikowia pulcherrima strains as producers of the antimicrobial pigment pulcherrimin. Z. Naturforsch. C.J. Biosci. 2009. V. 64 (5—6). P. 405—410. https://doi.org/10.1515/znc-2009-5-618
- Türkel S., Korukluoğlu M., Yavuz M. Biocontrol activity of the local strain of Metschnikowia pulcherrima on different postharvest pathogens. Hindawi Publishing Corporation Biotechnology Research International. V. 2014. Art. 397167. https://doi.org/10.1155/2014/397167
- Woolfolk S.W., Inglis G.D. Microorganisms associated with field-collected Chrysoperla rufilabris (Neuroptera: Chrysopidae) adults with emphasis on yeast symbionts. Biol. Control. 2004. V. 29. (2). P. 155—168. https://doi.org/10.1016/S1049-9644(03)00139-7
- Газиев М.А., Мусаев А.М., Залибеков М.Д. и др. (Gaziyev et al.) Перспективы использования биоресурсов некоторых видов дендрофлоры Дагестана // Известия ДГПУ. Естественные и точные науки. 2008. № 3 (4). С. 27—32.
- Глушакова А.М. (Glushakova) Экология эпифитных дрожжей. Дис. … канд. биол. наук. М.: МГУ, 2006.
- Максимова И.А., Юрков А.М., Чернов И.Ю. (Maksimova et al.) Пространственная структура эпифитных дрожжевых сообществ на плодах Sorbus aucuparia L. // Изв. РАН, сер. биол. 2009. № 6. С. 721—727.
- Пайзуллаева Г.П. (Payzullayeva) Рекреационный потенциал природных районов республики Дагестан: оценка и перспективы использования. Дис. … канд. геогр. наук. Нальчик: Высокогорный геофизический институт, 2012.
- Теренина Е.Е., Чернов И.Ю. (Terenina, Chernov) Таксономическая структура сообществ дрожжей, ассоциированных с беспозвоночными животными // Микология и фитопатология. 2001. Т. 35. № 4. С. 65—73.
- Чернов И.Ю. (Chernov) Дрожжи в природе. М.: Товарищество научных изданий КМК, 2013. 336 с.
Supplementary files
