CO2 and O2 gas exchange of brown and white rot fungi – destructors of coniferous debris
- Authors: Diyarova D.K.1, Zhuykova E.V.1, Mukhin V.A.1
-
Affiliations:
- Institute of Plant and Animal Ecology of Ural Branch of Russian Academy of Sciences
- Issue: Vol 58, No 5 (2024)
- Pages: 400-408
- Section: ФИЗИОЛОГИЯ, БИОХИМИЯ, БИОТЕХНОЛОГИЯ
- URL: https://rjraap.com/0026-3648/article/view/655937
- DOI: https://doi.org/10.31857/S0026364824050083
- EDN: https://elibrary.ru/uokwwr
- ID: 655937
Cite item
Abstract
Data are presented on a comparative analysis of carbon-oxygen gas exchange between basidiocarps of brown and white rot fungi and the coniferous wood they decay using the chamber method at 20°C. The ratio of CO2 and O2 volumes (characterizing the efficiency of the oxidative conversion of organic carbon into CO2) and CO2 emission activity (characterizing the intensity of the oxidative conversion of organic carbon into CO2) were assessed. It has been shown that the gas exchange of coniferous woody debris with brown and white rot is aerobic, and its carbon-oxygen balance is identical to the gas exchange of basidiocarps of the corresponding ecological and physiological groups of xylotrophic fungi and characterizes them as equally effective mineralizers: 70–80% of organic carbon is converted into CO2. The CO2 emission activity of woody debris with white and brown rot is close – for the former 0.11–0.12, for the latter 0.07–0.09 mg CO2/g/h – but for white rot it is 30–60% higher. The basidiocarps of brown rot fungi are distinguished by a higher respiration rate than that of white rot fungi, but in both cases it is many times higher (white rot fungi – 5–8 times, brown rot fungi – 11–90 times) higher than the CO2 emission activity of the wood they decay.
Keywords
Full Text

About the authors
D. K. Diyarova
Institute of Plant and Animal Ecology of Ural Branch of Russian Academy of Sciences
Author for correspondence.
Email: dasha_d@ipae.uran.ru
Russian Federation, Ekaterinburg
E. V. Zhuykova
Institute of Plant and Animal Ecology of Ural Branch of Russian Academy of Sciences
Email: e.zhuykova@list.ru
Russian Federation, Ekaterinburg
V. A. Mukhin
Institute of Plant and Animal Ecology of Ural Branch of Russian Academy of Sciences
Email: victor.mukhin@ipae.uran.ru
Russian Federation, Ekaterinburg
References
- Bondartseva M.A. Definitorium fungorum Rossiae. Ordo Aphyllophorales. Fasc. 2. Familiae Albatrellaceae, Aporpiaceae, Boletopsidaceae, Bondarzewiaceae, Corticiaceae (genera tubuliferae), Fistulinaceae, Ganodermataceae, Lachnocladiaceae (genus tubiliferus), Phaeolaceae, Polyporaceae (genera tubuliferae), Poriaceae, Rigidoporaceae. Nauka, SPb., 1998. (In Russ.).
- Bondartseva M.A., Parmasto E. Clavis diagnostica fungorum URSS. Ordo Aphyllophorales. Fasc. 1. Familiae Hymenochaetaceae, Lachnocladiaceae, Coniophoraceae, Schizophyllaceae. Nauka, Leningrad, 1986. (In Russ.).
- Castillo B.T., Franklin R.B., Amses K.R. et al. Fungal community succession of Populus grandidentata (Bigtooth Aspen) during Wood Decomposition. Forests. 2023. V. 14. Art. 2086. https://doi.org/10.3390/f14102086
- Chastukhin V. Ya. Ecological analysis of the decay of plant residues in spruce forests. Pochvovedenie. 1945. № 2. P. 102– 114. (In Russ.).
- Cowling E.B. Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi. Washington DC, U.S. Department of Agriculture, 1961.
- Diyarova D.K., Mukhin V.A. Carbon conversion activity and efficiency of xylotrophic basidiomycetes. In: Biodiversity and ecology of fungi and fungus-like organisms of Northern Eurasia: Proceedings of the All-Russian Conference with international participation. Ekaterinburg, 2015, pp. 72–74. (In Russ.).
- Diyarova D.K., Vladykina V.D., Mukhin V.A. Temperature Effect on CO2 Emission by two xylotrophic Fungi and by wood debris. Russian J. Ecology. 2023. V. 54 (3). P. 213–220. https://doi.org/10.1134/S1067413623030025
- Floudas D., Binder M., Riley R. et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2012. V. 336 (6089). P. 1715–1719. https://doi.org/10.1126/science.1221748
- Fukusawa Y. Ecological impacts of fungal wood decay types: A review of current knowledge and future research directions. Ecol. Res. 2021. V. 36 (6). P. 910–931. https://doi.org/10.1111/1440-1703.12260
- Gilbertson R.L. Wood-rotting fungi of North America. Mycologia. 1980. V. 72(1). P. 1–49. https://doi.org/10.2307/3759417
- Gilbertson R.L., Ryvarden L. North American polypores, V. 1: Abortiporus – Lindtneria. Oslo, Fungiflora, 1986.
- Haq I.U., Hillmann B., Moran M. et al. Bacterial communities associated with wood rot fungi that use distinct decomposition mechanisms. ISME COMMUN. 2022. V. 2. Art. 26. https://doi.org/10.1038/s43705-022-00108-5
- Index Fungorum. CABI database, 2023. http://www.indexfungorum.org. Accessed 07.11.2023.
- Isaev A.S., Korovin G.N. Forests of Russia and the Kyoto Protocol. In: Yu.A. Israel (ed.). Possibilities of preventing climate change and its negative consequences: the problem of the Kyoto Protocol: materials of the Council-seminar under the President of the Russian Academy of Sciences. Мoscow, 2006. P. 287–305. (In Russ.).
- Kamzolkina O.V., Bilanenko E.N., Shtaer O.V. et al. Topology of Fomes fomentarius, Fomitopsis pinicola and Piptoporus betulinus mycelium and attendant fungi and bacteria in birch wood. 2012. Mikologiya i fitopatologiya. V. 46 (3). P. 210–216. (In Russ.).
- Krah F.-S., Bässler C., Heibl C. et al. Evolutionary dynamics of host specialization in wood-decay fungi. BMC Evol. Biol. 2018. V. 18. Art. 119. https://doi.org/10.1186/s12862-018-1229-7
- Kudeyarov V.N., Zavarzin G.A., Blagodatsky S.A. et al. Carbon pools and flows in Russian terrestrial ecosystems. Moscow, Nauka, 2007. (In Russ.).
- Mukhin V.A. Biota of xylotrophic basidiomycetes of the West Siberian Plain. Nauka, Ekaterinburg, 1993. (In Russ.).
- Mukhin V.A., Diyarova D.K. Respiratory activity of substrate mycelium and fruiting bodies of wood-decaying fungi. In: Problemy lesnoy fitopatologii i mikologii: materialy VIII Mezhdunarodnoy konferentsii. Ulyanovsk, 2012. P. 266– 271. (In Russ.).
- Mukhin V.A., Diyarova D.K., Gitarskiy M.L. et al. Carbon and oxygen gas exchange in woody debris: The process and climate-related drivers. Forests. 2021. V. 12. Art. 1156. https://doi.org/10.3390/f12091156
- Mukhin V.A., Diyarova D.K., Veselkin D.V. The ratio of oxygen and carbon dioxide flows in the gas exchange of xylotrophic basidiomycetes. In: Problems of forest phytopathology and mycology: Proceedings of the X International Conference. Minsk, 2015. P. 145–148. (In Russ.).
- Mukhin V.A., Diyarova D.K., Veselkin D.V. Humidity as a factor in the CO2 emission activity of woody debris // Lesovedenie. 2015a. № 3. P. 208–213. (In Russ.).
- Mukhin V.A., Voronin P.Y., Ladatko V.A. et al. The oxygenic and cooperative respiration of the wood-decaying fungus Fomitopsis pinicola (Sw.: Fr.) Pers. Dokl. Biol. Sci. 2006. V. 407. P. 153–154. https://doi.org/10.1134/S0012496606020116
- Rubin B.A. A course in plant physiology: a textbook for biological specialties at universities. Vysshaya shkola, Moscow, 1971. (In Russ.).
- Ryvarden L., Gilbertson R.L. European polypores. V. 6. P. 1: Abortiporus – Lindneria. Oslo, Fungiflora, 1993.
- Soloviev V.A. Respiratory gas exchange of wood. Izdatelstvo LGU, Leningrad, 1983. (In Russ.).
- Tláskal V., Brabcová V., Vetrovský T. et al. Complementary roles of wood-inhabiting fungi and bacteria facilitate deadwood decomposition. 2021. mSystems. Art. 6: e01078–20. https://doi.org/10.1128/mSystems.01078-20
- Yoon T.K., Noh N.J., Kim S. et al. Coarse woody debris respiration of Japanese red pine forests in Korea: controlling factors and contribution to the ecosystem carbon cycle. Ecol. Res. 2015. V. 30 (4). P. 723–734. https://doi.org/10.1007/s11284-015-1275-1
- Zamolodchikov D.G., Grabovsky V.I., Kurts V.A. The influence of forest use volumes on the carbon balance of Russian forests: forecast analysis using the CBM–CFS3 model. Trudy Sankt-Peterburgskogo nauchno-issledovatelskogo instituta lesnogo hozyaystva. 2014. № 1. P. 5–18. (In Russ.).
- Zavarzin G.A., Zavarzina A.G. Xylotrophic and mycophilic bacteria in formation of dystrophic waters. Microbiology. 2009. V. 78. P. 523–534. https://doi.org/10.1134/S0026261709050014
- Zhang J., Markillie L.M., Mitchell H.D. et al. Distinctive carbon repression effects in the carbohydrate-selective wood decay fungus Rhodonia placenta. Fungal Genetics Biol. 2022. V. 159. Art. 103673. https://doi.org/10.1016/j.fgb.2022.103673
- Бондарцева М.А. (Bondartseva) Определитель грибов России. Порядок Афиллофоровые. Вып. 2. СПб.: Наука, 1998. 391 с.
- Бондарцева М.А., Пармасто Э.Х. (Bondartseva, Parmasto). Определитель грибов СССР. Пор. Афиллофоровые. Вып. 1: Семейства гименохетовые, лахнокладиевые, кониофоровые, щелелистниковые. Л.: Наука, 1986. 192 с.
- Диярова Д.К., Мухин В.А. (Diyarova, Mukhin) Углерод конверсионная активность и эффективность ксилотрофных базидиомицетов // Биоразнообразие и экология грибов и грибоподобных организмов Северной Евразии: материалы Всероссийской конференции с международным участием. Екатеринбург, 2015. С. 72–74.
- Замолодчиков Д.Г., Грабовский В.И., Курц В.А. (Zamolodchikov et al.) Влияние объемов лесопользования на углеродный баланс лесов России: прогнозный анализ по модели CBM–CFS3 // Труды Санкт-Петербург. науч.-исслед. ин-та лесного хозяйства. 2014. № 1. С. 5–18.
- Исаев А.С., Коровин Г.Н. (Isaev, Korovin) Леса России и Киотский протокол // Возможности предотвращения изменения климата и его негативных последствий: проблема Киотского протокола: материалы Совета-семинара при президенте РАН / под ред. Ю.А. Израэля. М., 2006. С. 287–305.
- Камзолкина О.В., Биланенко Е.Н., О.В. Штаер и др. (Kamzol-kina et al.) Топография мицелия Fomes fomentarius, Fomitopsis pinicola, Piptoporus betulinus и сопутствующих им грибов и бактерий в древесном субстрате // Микология и фитопатология. 2012. Т. 46. Вып. 3. С. 210–216.
- Кудеяров В.Н., Заварзин Г.А., Благодатский С.А. и др. (Kudeyarov et al.) Пулы и потоки углерода в наземных экосистемах России / Отв. ред. Г.А. Заварзин. Москва: Ин-т физ.-хим. и биол. проблем почвоведения РАН, 2007. 315 с.
- Мухин В.А. (Mukhin) Биота ксилотрофных базидиомицетов Западно-Сибирской равнины. Екатеринбург, УИФ “Наука”, 1993. 231 с.
- Мухин В.А., Диярова Д.К. (Mukhin, Diyarova) Дыхательная активность субстратного мицелия и плодовых тел дереворазрушающих грибов // Проблемы лесной фитопатологии и микологии: материалы VIII Международной конференции. Ульяновск, 2012. С. 266–271.
- Мухин В.А., Диярова Д.К., Веселкин Д.В. (Mukhin et al.) Влажность как фактор СО2-эмиссионной активности древесного дебриса // Лесоведение. 2015. № 3. С. 208–213.
- Мухин В.А., Диярова Д.К., Веселкин Д.В. (Mukhin et al.) Соотношение потоков кислорода и диоксида углерода в газообмене ксилотрофных базидиомицетов // Проблемы лесной фитопатологии и микологии: материалы 9-й Международной конференции. Минск, 2015. С. 145–148.
- Рубин Б.А. (Rubin) Курс физиологии растений: учебник для биологических специальностей университетов. М.: Высшая школа, 1971. 672 c.
- Соловьев В.А. (Soloviev) Дыхательный газообмен древесины. Л.: Изд-во ЛГУ, 1983. 300 с.
- Частухин В.Я. (Chastukhin) Экологический анализ распада растительных остатков в еловых лесах // Почвоведение. 1945. № 2. С. 102–114.
Supplementary files
