Crystallographic classification of special intercrystalline boundaries
- Autores: Darinskiy B.M.1, Prizhimov A.S.1
- 
							Afiliações: 
							- Voronezh State University
 
- Edição: Volume 70, Nº 4 (2025)
- Páginas: 560–564
- Seção: ТЕОРИЯ КРИСТАЛЛИЧЕСКИХ СТРУКТУР
- URL: https://rjraap.com/0023-4761/article/view/688072
- DOI: https://doi.org/10.31857/S0023476125040037
- EDN: https://elibrary.ru/JFNNWA
- ID: 688072
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A classification of special intercrystalline boundaries in centrosymmetric crystals of all syngonies is constructed based on the symmetric properties of planar lattices. It is shown that the set of orientation parameters identifying special boundaries is determined by the orientation of the plane formed by the matching atoms of the contacting crystals. Unlike the general type of boundaries, the number of these parameters is either two or three. It is shown that the lattice of matching bicrystal nodes appears only in crystals with high-order axes of symmetry. Possible misorientations of the contacting crystals are found depending on the symmetry of the crystallographic plane for different crystallographic conditions.
Texto integral
 
												
	                        Sobre autores
B. Darinskiy
Voronezh State University
							Autor responsável pela correspondência
							Email: darinskii@mail.ru
				                					                																			                												                	Rússia, 							Voronezh						
A. Prizhimov
Voronezh State University
														Email: darinskii@mail.ru
				                					                																			                												                	Rússia, 							Voronezh						
Bibliografia
- Watanabe T. // J. Mater. Sci. 2011. V. 46. P. 4095. https://doi.org/10.1007/s10853-011-5393-z
- Kobayashi S., Hirata M., Tsurekawa S., Watanabe T. // Procedia Engineering. 2011. V. 10. P. 112. https://doi.org/ 10.2320/matertrans.MB201804
- Randle V. // Scr. Mater. 2006. V. 54. P. 1011. https://doi.org/10.1016/j.scriptamat.2005.11.050
- Geng X., Vega-Paredes M., Wang Z. // Nat. Commun. 2024. V. 15. P. 8534. https://doi.org/10.1038/s41467-024-52919-w
- Zelinsky J.A. // Massachusetts Institute of Technology. 2005. P. 74.
- De Souza R.A., Munir Z.A., Kim S., Martin M. // Solid State Ion. 2011. V. 196. P. 1. https://doi.org/10.1016/j.ssi.2011.07.001
- Nyman B.J., Helgee E.E., Wahnström G. // Appl. Phys. Lett. 2012. V. 100. P. 061903. https://doi.org/10.1063/1.3681169
- Aus M.J., Szpunar B., Erb U. // MRS Online Proceedings Library. 1993. V. 318. P. 39. https://doi.org/10.1557/PROC-318-39
- Radle V., Coleman M. // Acta Mater. 2009. V. 57. P. 3410. https://doi.org/10.1016/j.actamat.2009.04.002
- Kogtenkova O., Straumal B., Korneva A. et al. // Metals. 2019. V. 9. P. 10. https://doi.org/10.3390/met9010010
- Cantwell P.R., Frolov T., Rupert T.J. et al. // Annu. Rev. Mater. Res. 2020. V. 50. P. 465. https://doi.org/10.1146/annurev-matsci-081619-114055
- Adams T.B., Sinclair D.C., West A.R. // Phys. Rev. B. 2006. V. 73. P. 094124. https://doi.org/10.1103/PhysRevB.73.094124
- Cao G., Shen J., Ng D. et al. // Light Sci. Appl. 2021. V. 10. P. 1. https://doi.org/10.1038/s41377-021-00515-8
- Kim H.W. // Appl. Microsc. 2023. V. 53. P. 5. https://doi.org/10.1186/s42649-023-00088-3
- Bollmann W. Crystal Defects and Crystalline Interfaces. Berlin: Springer, 1970
- Grimmer H. // Acta Cryst. A. 1974. V. 30. P. 680. https://doi.org/10.1107/S056773947400163X
- Singh A., Chandrasekhar N., King A.H. // Acta Cryst. B. 1990. V. 46. P. 117. https://doi.org/10.1107/S0108768189011006
- Grimmer H. // Acta Cryst. A. 1989. V. 45. P. 505. https://doi.org/10.1107/S0108767389002291
- Grimmer H., Warrington D.H. // Acta Cryst. A. 1987. V. 43. P. 232. https://doi.org/10.1107/S0108767389002291
- Глейтер Г., Чалмерс Б. Большеугловые границы зерен. М.: Мир, 1975. 376 с.
- Орлов А.Н., Перевезенцев В.Н., Рыбин В.В. Границы зерен в металлах. М.: Металлургия, 1980. 224 с.
- Straumal B.B., Shvindlerman L.S. // Acta Metall. 1985 V. 33. P. 1735. https://doi.org/10.1016/0001-6160(85)90168-3
- Wolf D. // Handbook of Materials Modeling. Dordrecht: Springer, 2005. P. 1953. https://doi.org/10.1007/978-1-4020-3286-8_102
- Polfus J.M., Toyoura K., Oba F. et al. // Phys. Chem. Chem. Phys. 2012. V. 14. P. 12339. https://doi.org/10.1039/C2CP41101F
- Fortes M.A. // Phys. Status Solidi. B. 1977. V. 82. P. 377. https://doi.org/10.1002/pssb.2220820143
- Mishin Y., Asta M., Li Ju // Acta Mater. 2010. V. 58. P. 1117. https://doi.org/10.1016/j.actamat.2009.10.049
- Bonnet R., Durand F. // Scr. Metall. 1975. V. 9. P. 935. https://doi.org/10.1016/0036-9748(75)90548-7
- Даринский Б.М., Ефанова Н.Д., Прижимов А.С. // Конденсированные среды и межфазные границы. 2019. Т. 21. № 4. С. 490. https://doi.org/10.17308/kcmf.2019.21/2361
- Darinskiy B.M., Efanova N.D., Saikо D.S. // Ferroelectrics. 2020. V. 567. P. 13. https://doi.org/10.1080/00150193.2020.1791582
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
