Transitions between equilibrium and nonequilibrium phenomena in the description of crystal growth

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The close intertwining of equilibrium and nonequilibrium thermodynamic representations and transitions between the two limiting principles of thermodynamics: the second beginning and the principle of least coercion (minimum entropy production in the stationary regime) constitute the main content of phenomenological theories of crystal growth. The difference of basic postulates of two sections of thermodynamics forces to discuss problems of reversibility and irreversibility of time, scales of observed phenomena and rules of conjugation of thermodynamic forces and flows in theories of crystal growth. A variant of the solution of some conjugation problems is shown on the example of the fluctuation model of dislocation crystal growth, which is based on the stationary isothermal process of thermodynamic free energy fluctuations. In the case of the limiting mode of adsorption of impurities on the crystal face according to the Langmuir model, the free energy fluctuations possessing the absence of the memory effect allow us to identify three chemical potentials of building particles that determine the corresponding values of solution supersaturations realized at different scale levels at the growing crystal face containing a helical dislocation. The supersaturations control quasi-equilibrium and nonequilibrium thermodynamic processes that constitute a single dislocation mechanism of crystal growth.

Full Text

Restricted Access

About the authors

V. I. Rakin

Institute of Geology FRC Komi SC UB RAS

Author for correspondence.
Email: rakin@geo.komisc.ru
Russian Federation, Syktyvkar

References

  1. Rakin V.I. // Crystallography Reports. 2016. V. 61. № 3. P. 517. https://doi.org/10.1134/S1063774516020152
  2. Пискунова Н.Н. // Зап. Рос. минерал. о-ва. 2022. Ч. 151. № 5. С. 112. https://doi.org/10.31857/S0869605522050069
  3. Рашкович Л.Н., Петрова Е.В., Шустин О.А., Черневич Т.Г. // ФТТ. 2003. Т. 45. № 2. С. 377.
  4. Бор Н. Атомная физика и человеческое познание. М.: ИЛ, 1961. 151 с.
  5. Ракин В.И. // Crystallography Reports. 2023. V. 68. № 2. P. 329. https://doi.org/10.1134/S106377452302013X
  6. Пригожин И. Введение в термодинамику необратимых процессов. М.: ИЛ, 1960. 128 с.
  7. Больцман Л. Избранные труды. М.: Наука, 1984. 590 с.
  8. Кэрролл Ш. Вечность. В поисках окончательной теории времени. СПб.: Питер, 2016. 512 с.
  9. Burton W.K., Cabrera N., Frank F.C. // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1951. V. 243 (866). P. 299. https://doi.org/10.1098/rsta.1951.0006
  10. Rakin V.I. // Crystallography Reports. 2022. V. 67. № 2. P. 294. https://doi.org/10.1134/S1063774522020122
  11. Чернов А.А., Гиваргизов Е.И., Багдасаров Х.С. и др. Современная кристаллография (в 4 томах). Образование кристаллов. М.: Наука, 1980. Т. 3. 408 с.
  12. Stiller W. Arrhenius Equation and Non-equilibrium Kinetics: 100 Years Arrhenius Equation. Leipzig: Publisher BSB Teubner B.G., 1989 160 p.
  13. Пригожин И., Кондепуди Д. Современная термодинамика. От тепловых двигателей до диссипативных структур. М.: Мир. 2002. 461 с.
  14. Rakin V.I. Crystallography Reports. 2023. V. 68. № 2. P. 329. https://doi.org/10.1134/S106377452302013X
  15. Rakin V.I. // Crystallography Reports. 2022. V. 67. № 7. P. 1259. https://doi.org/10.1134/S1063774522070252
  16. Ландау Л.Д. О равновесной форме кристаллов: Сборник, посвященный семидесятилетию академика А.Ф. Иоффе. М.: Наука, 1950. 44 c.
  17. Венцель Е.С. Теория вероятностей: Учеб. для вузов. 7-е изд. М.: Высш. шк., 2001. 575 с.
  18. Гнеденко Б.В. Курс теории вероятностей. М.: Едиториал УРСС, 2005. 448 с.
  19. Хинчин А.Я. Предельные теоремы для сумм независимых случайных величин. М.; Л: ОНТИ НКТП СССР, 1938. 116 с.
  20. Frank F.C. //Acta Cryst. 1951. V. 4. P. 497.
  21. Cabrera N., Levine M.M. // Philos. Mag. 1956. V. 1. № 5. P. 450. https://doi.org/10.1080/14786435608238124
  22. De Yoreo J.J., Land T.A., Lee J.D. // Phys. Rev. Lett. 1997. V. 78. № 23. P. 4462.
  23. Ракин В.И. Пространственные неоднородности в кристаллообразующей системе. Екатеринбург: Изд-во УрО РАН, 2003. 370 с.
  24. Hottenhuis M.H.J., Lucasius C.B. // J. Cryst. Growth. 1989. V. 94. № 3. P. 708.
  25. Ландау Л.Д., Лифшиц Е.М. Статистическая физика. Ч. 1. (сер. “Теоретическая физика”. Т. 5.). М.: Наука, 1976. 584 с.
  26. Gilmer G.H., Ghez R., Cabrera N. // J. Cryst. Growth. 1971. V. 15. P. 79. https://doi.org/10.1016/0022-0248(71)90027-3
  27. Van Der Erden J.P. // J. Cryst. Growth. 1982. V. 56. P. 174. https://doi.org/10.1016/0022-0248(82)90027-6
  28. Трейвус Е.Б. // Зап. Всесоюз. минерал. о-ва. 1989. № 3. С. 91.
  29. Rakin V.I. // Crystallography Reports. 2022. V. 67. № 2. P. 286. https://doi.org/10.1134/S1063774522020110
  30. Rakin V.I. // Crystallography Reports. 2020. V. 65. № 6. P. 1051. https://doi.org/10.1134/S1063774520060309

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Arrangement of surface atoms around a screw dislocation on a face with tetragonal symmetry. The first layer of the nearest 16 atoms is shown. The atoms in direct contact with the dislocation are highlighted in dark color here and in Table 1.

Download (81KB)
3. Fig. 2. Interferogram of polygonal growth pyramids of two screw dislocations on the surface of the (111) face of alum. The spatial frequency of the interference fringes is proportional to the frequency of the elementary steps. The lower dislocation (black arrow) has a Burgers vector twice as large, and its growth pyramid actively absorbs the upper pyramid (white arrow). The angle between the base surface of the face of the octahedron of alum and the inclined flat face of the growing pyramid, which is a simple crystallographic form of tetragontrioctahedron, usually varies in the range from 10 to 20 angular minutes [14].

Download (188KB)
4. Fig. 3. AFM image of a potassium biphthalate face obtained in [3]. The dots mark the exits of four dislocations with a unit Burgers vector. Crystallographic directions are highlighted in accordance with the symmetry of the face described in [24].

Download (194KB)
5. Fig. 4. Kinetics of crystal facet growth of aluminum-potassium alum in an aqueous solution with active stirring, obtained using a Michelson interferometer [23]. T = 20°C. Facets of simple shapes: 1 – {111}, 2 – {100}, 3 – {110}.

Download (97KB)

Copyright (c) 2024 Russian Academy of Sciences