Mechanism of Interaction of Nitro Compounds with Olefins in Acetonitrile

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The interaction of 4-fluorostyrene with 4-CN-PhNO2 in the presence of various solvents has been simulated by quantum chemistry methods. The reaction mechanism and activation barriers of its stages are proposed. The software package Gaussian03 was used for calculations. The optimal geometric parameters of the structures under study were obtained by means of the DFT/WB97XD/DGDZVP2 methods, the TDSCF/DFT/WB97XD/DGDZVP2 and TD-SCF/DFT/PBEPBE/6-311g++(3d2f,3p2d) methods were used to calculate excited singlet and triplet states, and the IEFPCM model was employed to account for the solvent effects. The transition states were calculated by the TS method using the DFT/PBEPBE/6-311g++(3d2f,3p2d) method.

Sobre autores

S. Plekhovich

Lobachevsky State University of Nizhny Novgorod (National Research University)

Email: senypl@mail.ru
Nizhny Novgorod, 603950 Russia

S. Zelentsov

Lobachevsky State University of Nizhny Novgorod (National Research University)

Email: senypl@mail.ru
Nizhny Novgorod, 603950 Russia

I. Grimova

Lobachevsky State University of Nizhny Novgorod (National Research University)

Autor responsável pela correspondência
Email: senypl@mail.ru
Nizhny Novgorod, 603950 Russia

Bibliografia

  1. Gaussian R.A., Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A. et al. // Gaussian. Inc., Wallingford CT. 2003.
  2. Buchi G., Ayer D. E. // J. Am. Chem. Soc. 1956. V. 78. № 3. P. 689.
  3. Plekovich S.D., Zelentsov S.V., Minasyan Y.V., Grimova I.T. // High Energy Chemistry. 2022. V. 56. № 1. P. 32.
  4. Wise E., Gogarnoiu E., Duke A., Paolillo J., Vacala T., Hussain W., Parasram M. // J. Am. Chem. Soc. 2022. V. 144. № 34. P. 15437.
  5. Talipov M.R., Khursan S.L., Safiullin R.L. // Russ. J. Phys. Chem. 2011. V. 85. p. 364.
  6. Ishikawa S., Tsuji S., Sawaki Y. // J. Amer. Chem. Soc. 1991. V. 113. p. 4282.
  7. Tang L., Fang C. // J. Phys. Chem. B. 2019. V. 123. № 23. p. 4915.
  8. Issa Y., Abdel-Latif S., El-Ansary A., Hassib H. // New J. Chem. 2021. V. 45. P. 1482.
  9. Wiley & Sons, Inc. SpectraBase; SpectraBase Compound ID=AZU8Yr4NC7o SpectraBase Spectrum ID=8nNbPlotVFS https://spectrabase.com/spectrum/8nNbPlotVFS (access 16.05.2023).
  10. Veeman W.S., van der Waals J.H. // Mol. Phys. 1970. V. 18. № 1. P. 63.
  11. Xiong J.Yi., Cheng Y.K., Li M, Chu G., Pu X., Xu T. // Scientific Reports. 2016. V. 6. P. 19364.
  12. Harley R., Tesla A.C. // J. Am. Chem. Soc. 1968. V. 90. p. 1949.
  13. Buchi G., Ayer D. E. // J. Am. Chem. Soc. 1956. V. 78. P. 689.
  14. Plekhovich S.D., Zelentsov S.V., Minasyan Y.V., Degtyarenko A.I. // High Energy Chemistry. 2018. V. 52. № 6. p. 469.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (10KB)
3.

Baixar (20KB)
4.

Baixar (43KB)
5.

Baixar (40KB)
6.

Baixar (24KB)
7.

Baixar (26KB)
8.

Baixar (35KB)
9.

Baixar (39KB)
10.

Baixar (46KB)
11.

Baixar (20KB)

Declaração de direitos autorais © С.Д. Плехович, С.В. Зеленцов, И.Т. Гримова, 2023