Degradation of the Chromophore Functions of Dyes in Irradiated Solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Radiolysis damages the system of conjugated bonds and thus leads to the degradation of the chromophore functions of dyes in aqueous solutions. Ten representatives of quinophthalone, indigo, triphenylmethane, and azo dyes exhibited the same type of correlations between the absorbed dose and the degree of discoloration. It was shown using the method of competing scavengers that the color of aerated solutions decreased mainly due to the addition of OH radicals to the dyes. The radiation-chemical yields of discoloration ranged from 0.03 to 0.11 μmol/J and increased depending on the length of bond conjugation in the dye molecules. For practical electron-beam discoloration of dye solutions with a concentration of 20 mg/dm3, an
absorbed dose of 1–1.5 kGy was sufficient.

About the authors

E. M. Kholodkova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: ponomarev@ipc.rssi.ru
Moscow, 119071 Russia

A. V. Ponomarev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Author for correspondence.
Email: ponomarev@ipc.rssi.ru
Moscow, 119071 Russia

References

  1. Traven V.F. // Frontier Orbitals and Properties of Organic Molecules (Ellis Horwood Series in Organic Chemistry), Mellor, J. ed. Ellis Horwood Ltd, NY. 1992.
  2. Arora S. // J. Bioremediation Biodegrad. 2014. V. 5. P. e146. https://doi.org/10.4172/2155-6199.1000e146
  3. Tkaczyk A., Mitrowska K., Posyniak A. // Sci. Total Environ. 2020. V. 717. P. 137222. https://doi.org/10.1016/j.scitotenv.2020.137222
  4. Rocha O.P., Cesila C.A., Christovam E.M., Barros S.B., Zanoni M.V., de Oliveira D.P. // Toxicology. 2017. V. 376. P. 113. https://doi.org/10.1016/j.tox.2016.04.002
  5. Collivignarelli M.C., Abbà A., Carnevale Miino M., Damiani S. // J. Environ. Manage. 2019. V. 236. P. 727. https://doi.org/10.1016/j.jenvman.2018.11.094
  6. Kholodkova E.M., Imatdinova D.N., Ponomarev A.V. // High Energy Chem. V. 54(4). P. 296. https://doi.org/10.1134/S0018143920030078
  7. Ponomarev A.V., Kholodkova E.M., Bludenko A.V. // Radiat. Phys. Chem. 2022. V. 199. P. 110357. https://doi.org/10.1016/j.radphyschem.2022.110357
  8. Ponomarev A.V., Ershov B.G. // Environ. Sci. Technol. 2020. V. 54. P. 5331. https://doi.org/10.1021/acs.est.0c00545
  9. Woods R., Pikaev A. // Applied Radiation Chemistry. Radiation Processing. Wiley. NY. 1994.
  10. Wojnárovits L., Takács E. // J. Radioanal. Nucl. Chem. 2017. V. 311. P. 973. https://doi.org/10.1007/s10967-016-4869-3
  11. Ponomarev A.V. // Radiat. Phys. Chem. 2020. V. 172. P. 108812. https://doi.org/10.1016/j.radphyschem.2020.108812
  12. Alkhuraiji T.S., Boukari S.O.B., Alfadhl F.S. // J. Hazard. Mater. 2017. V. 328. P. 29. https://doi.org/10.1016/j.jhazmat.2017.01.004
  13. Kovács K., He S., Míle V., Földes T., Pápai I., Takács E., Wojnárovits L. // Radiat. Phys. Chem. 2016. V. 124. P. 191. https://doi.org/10.1016/j.radphyschem.2015.10.028
  14. Paul J., Naik D.B., Bhardwaj Y.K., Varshney L. // Radiat. Phys. Chem. 2014. V. 100. P. 38. https://doi.org/10.1016/j.radphyschem.2014.03.016
  15. Shen Y., Chu L., Zhuan R., Xiang X., Sun H., Wang J. // J. Environ. Manage. 2019. V. 232. P. 171. https://doi.org/10.1016/j.jenvman.2018.11.050
  16. Wang J., Chu L. // Radiat. Phys. Chem. 2016. V. 125. P. 56. https://doi.org/10.1016/j.radphyschem.2016.03.012
  17. Meeroff D.E., Bloetscher F., Shaha B. // Radiat. Phys. Chem. 2019. V. 168. P. 108541. https://doi.org/10.1016/j.radphyschem.2019.108541

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (89KB)
3.

Download (85KB)
4.

Download (9KB)
5.

Download (11KB)
6.

Download (14KB)
7.

Download (8KB)
8.

Download (34KB)

Copyright (c) 2023 Е.М. Холодкова, А.В. Пономарев